Boys’ Education Lighthouse Schools Stage Two Final Report 2006

Report Authors:
Professor Peter Cuttance
Dr Wesley Imms
Dr Sally Godhino
Dr Elizabeth Hartnell-Young
Dr Jean Thompson
Ms Keryn McGuinness
Dr Gregory Neal
TABLE OF CONTENTS

CHAPTER 1

THE BELS FRAMEWORK FOR IMPROVING BOYS LEARNING

EDUCATIONAL & SOCIAL CONTEXT OF THE BELS PROJECT

CHAPTER 2

PROFESSIONAL LEARNING

What Works

Professional Learning in BELS

CHAPTER 3

THE KNOWLEDGE-BASE

Popular Myths

Recognising the Maturity of Young People

Different Distributions for Boys & Girls

Gender Differentials in Learning Outcomes

International Evidence on Gender Differentials

Effective Teaching

Discussion

CHAPTER 4

AREAS OF FOCUS AND STRATEGIES DEVELOPED BY BELS CLUSTERS

Overview of Approaches Used

Literacy & Pedagogy Focused Projects

Pedagogy & Learning Styles

Engagement, Support and Relationships

Whole-School and Community

Relationships, Masculinities, Role Models & Mentoring

ICT (Information Communications Technologies)

The Multi-Faceted nature of the projects

Discussion

CHAPTER 5

EDUCATIONAL OUTCOMES

Assessment of Impact

Assessment of Impact for Individual Clusters

CHAPTER 6

CASE STUDIES

Bayside/Thornlands Cluster

What the Project Team Learnt

Mildura Cluster

Beachside Cluster

Eden Cluster

Mt Claremont Cluster

Kew Cluster

Lismore Cluster

New Town Cluster

CHAPTER 7

WHAT WORKS FOR BOYS?

STRATEGIC LESSONS FOR SCHOOLS

Strategic Interventions

Professional Learning
Towards an Integrated Approach to Supporting Boys Learning and Development... 75
Consolidating the Strategies ... 78
An Integrated Approach.. 87
DISCUSSION.. 90
CHAPTER 8... 94
ORGANISATIONAL FRAMEWORK FOR THE BELS PROJECT........... 94
AN EVIDENCE-BASED LEARNING FRAMEWORK............................... 96
Reporting & Innovation Process for the Project................................. 97
Selection of Schools... 98
Students in the Selected Schools.. 100
Teachers in the Selected Schools... 101
School & Cluster Capacity.. 101
Consultancy Support to Schools... 103
REFERENCES.. 104
CHAPTER 1

THE BELS FRAMEWORK FOR IMPROVING BOYS LEARNING

This first chapter of the final report from the Boys’ Education Lighthouse Schools project (BELS) provides an overview of the educational context of the project, the organisation, management and professional learning framework constructed to support the BELS school clusters to develop and implement projects to improve learning outcomes for boys.

The organisational framework for the BELS project was based on that developed in the Innovation and Best Practice Project (IBPP) undertaken for the Commonwealth Government in 1998–1999. The BELS national network delegated devolution of decision-making about cluster projects to the local level within a nationally co-ordinated BELS Network.

In proposing the design of the project, the Project Director, Professor Peter Cuttance, focused on supporting schools to work together in clusters to develop and implement strategies to improve learning outcomes for boys. Clusters were expected to implement a strong evidence-based evaluation framework designed to provide clear evidence as to whether the strategies implemented by the cluster improved learning outcomes for boys.

EDUCATIONAL & SOCIAL CONTEXT OF THE BELS PROJECT

The BELS project followed almost a decade of public enquiries into issues associated with boys’ learning in Australian schools. Further, many advocates of the need to focus on boys argued that there was a growing body of evidence about differences in boys’ and girls’ learning achievements and participation in schooling (Collins et al, 2000; Collins et al, 1996; Cortis & Newmarch, 2000; Cresswell et al, 2002; Hyde, 2005; Rowe, 2000).

Research and public debate over the previous decade had identified the following key issues in relation to boys’ participation in schooling and their educational outcomes:

- there are more boys than girls identified as ‘at-risk’ in literacy (Rowe & Rowe, 1999; Rowe, 2000). A lower proportion of boys are achieving the national literacy benchmarks, compared to girls (Commonwealth Government, 2002);
- recent studies had indicated that boys reported less positive experiences and enjoyment of schooling (Trent & Slade, 2001; Rowe & Rowe, 1999);
- other studies indicated that boys are less engaged in their schooling, more easily distracted, and less motivated (Collins et al, 1996);
- behavioural issues are more likely to be associated with boys, as and is risk-taking, and depression and suicide is more prevalent among boys than girls (Collins et al, 1996);
- the school retention rate for boys is lower than that for girls (Collins et al, 2000); and
- the gap between boys’ and girls’ tertiary entrance scores has widened over the past two decades (Commonwealth Government, 2002).
While these issues are significant, research had also shown the need to be mindful of making generalisations about boys' performance and viewing them as a homogeneous group (Alloway et al., 2002; Lingard et al., 2002). Boys do share common experiences of 'being a boy' in Australian society and are undoubtedly influenced by dominant discourses and images of masculinity. However, Martino (2003) argued that we should not lose sight of the complex way in which social practices of masculinity interweave with other social influences such as class, race, geographical location, disability, and sexuality to impact on boys' literacy practices. The different social and cultural backgrounds that boys bring to the classroom need be considered to understand their experiences (Alloway et al., 2002; Lingard et al., 2002; Rowan et al., 2002).

The Alloway et al. (2002) report Boys, Literacy and Schooling stressed the importance of boys having opportunities to negotiate their construction of masculinity, in particular the need to address stereotyped or hyper images of masculinity and what it means to be male. In examining boys' perceptions of what it means to be a male, Trent and Slade (2001) found the popularly held conception that it is 'not cool to be clever' was overwhelmingly rejected by the students they surveyed. Such statements were regarded by boys as simplistic and an example of adults simply getting it wrong, indicating the importance of questioning commonly held assumptions about boys' attitudes.

A persistent concern in recent reports has been the lower level of engagement with schoolwork for boys compared to that for girls (Commonwealth Government, 2002; Cresswell et al., 2002; Trent and Slade, 2001). Trent and Slade’s (2001) report on Declining Rates of Achievement and Retention: The Perceptions of Adolescent Boys indicated that boys believe the adult world is not actively listening to them. From the boys’ perspective, too many teachers “don’t ask”, “don’t listen”, “don’t care” and are not “culturally up to date” (Trent and Slade, 2001). This is associated also with a perception by some boys that school work is boring, repetitive, irrelevant and out of touch with the real world.

Broadly, educational dialogue has identified the importance of addressing the learning styles of individual students with the implication that there is a need to raise teachers’ awareness of differences in the learning styles of boys and girls (Commonwealth Government, 2002). In their report Boys in Schools: What’s Happening? Cortis and Newmarch (2000) argued that a pedagogical explanation for boys’ poorer school performance is the different learning styles of boys, which are not effectively catered for in many schools. For example, they point to the tendency for boys to favour mathematical and logical forms of thinking in preference to language-based modes of thinking, and that boys respond to the physical, whereas girls respond to the personal. Likewise, boys are seen as more responsive to visual and girls more responsive to verbal instruction (Commonwealth Government, 2002).

Teacher awareness of students’ learning styles and modalities (Coil, 1996) as exemplified by the theory of Multiple Intelligences (Gardener, 1993) may be an important factor in providing effective support for boys to learn in different ways. However, the notion of learning styles as applied to sub-groups of the student population is problematic, because it focuses, in this case, on gender-based differences in learning styles, rather than, on the learning needs of individual boys. Further, Martino (2003) cautions that the reinforcement of learning styles can lead to overlooking the importance of addressing the literacy requirements demanded by changing labour markets and the wider repertoire of skills required to engage in society at large.

A key focus of recent concerns in relation to boys’ underachievement at school is literacy. The fundamental role of literacy attaches to the central role of language as the prerequisite for all capacities that require thinking and communication. Cresswell, Rowe & Withers (2002) claim boys are at a distinct disadvantage because their verbal communication skills
and verbal reasoning do not meet the increased operational demands of schooling. However, Godinho and Shrimpton (2003) found that boys can demonstrate substantially improved verbal, discussion and communication skills when such skills are explicitly taught and practised. Teachers’ knowledge of what constitutes discussion, coupled with their knowledge of talk patterns, strategies and practices that facilitate students’ exploratory talk and reasoning skills, impact significantly on the quality of boys’ talk.

Recent research by Love & Hamston (2001, 2003) and Hamston & Love (2000) makes explicit the cultural practices that contribute to differential reading capabilities of teenage boys, some of whom are identified as ‘able and committed readers’ and some of whom are ‘able and reluctant readers’. A picture emerges from this research of a range of reading ‘reluctancies’, situated in complex patterns of social actions and shaped in interactions between individual boys, their families, peers and school. This notion of being a reluctant reader recognises the agency of boys to choose from a range of options available within their learning and social environment.

Recent research has also highlighted the limitations of ‘reading’ as a singular concept and the consequences of privileging a limited range of traditional print-based texts for their perceived role in supporting the work of schools in shaping the moral and intellectual development of young men. Ignoring the role of multi-modal forms of reading preferred by some boys in the contemporary digital context runs the risk of alienating these boys from schooling. Boys need:

more than the limited repertoire of texts made available through male youth culture...more than the restricted range of reading...such texts offer and more than the stories made popular through electronic game culture...and sport journalism. (Gilbert & Gilbert, 1998: 203)

Digital texts, for example, provide opportunities for teenage boys to explore how language, blended with visual communication, contributes to the development of an understanding of their lives (Alloway & Gilbert, 1997; Beavis, 2002; Gilbert & Gilbert, 1998).

The implications of the above for the BELS Project included the need to:

- identify and respond to individual learning styles;
- foster an effective school culture based on quality teaching practices;
- make learning relevant and connected;
- establish positive relationships with students; and
- build supportive classroom environments in which students feel valued and are encouraged to take risks.
CHAPTER 2

PROFESSIONAL LEARNING

WHAT WORKS

Most professional development programmes assume that teacher learning must precede changes in teaching practice, and as a result they design programmes that focus on enhancing teachers’ knowledge of the target area of teaching. This is fine, as far as it goes — but, the key objective is not to improve teachers’ knowledge, it is to improve student learning outcomes. Because many professional learning programmes are provided independently of the context of improving student learning, they have limited reach and impact. A more effective model of professional learning encompasses the context of student learning.

Research on the efficacy of professional learning programmes in terms of their impact on the improvement of student learning is not abundant (GAO, 1994). For example, the recent evaluation of the efficacy of the Commonwealth Government Quality Teacher Programme (Meiers & Ingvarson, 2005; Ingvarson, Meiers and & Beavis, 2005) was not able to directly measure improvement in student learning, owing to the fact that many professional learning programmes do not themselves place any direct emphasis on improved student outcomes, and as a result, do not gather any baseline data on student learning outcomes. Consequently, Ingvarson et al were limited to a strategy of asking teachers in the programmes to indicate whether their students had improved learning outcomes following the professional learning programme. Teachers were asked to indicate whether their students:

- had fewer difficulties in understanding what they were being taught;
- were learning more purposefully;
- were more actively engaged in learning activities;
- demonstrated enhanced learning outcomes; and
- accessed and used materials and resources more effectively.

In reviewing evaluation studies of professional development, Frechtling found that:

Most evaluations either ignore student achievement or provide unconvincing or often anecdotal teacher reports of positive student outcomes, relying instead on self-reports [that] provide unconvincing evidence of real gains in student performance. (2001: 23)

Professional development programmes have their main impact when they are closely aligned with the requirements for schools to provide evidence of their performance:

Professional development aligned with…accountability requirements contributed to dramatic improvement in students’ reading achievement. Professional development supported implementation of the Success for All reading and math curriculum by focusing on shared learning goals, teaching strategies, and high expectations for student achievement (King & Newman, 2000).

The key findings of the Ingvarson et al (2005) research above are encapsulated in the following extended quotation from the report from the study:

When we look at...impact on knowledge and practice together, the significance of professional community as a mediating variable becomes apparent...The extent to which a professional development programme influences knowledge
and practice...is enhanced by...the extent to which it increases opportunities for teachers to talk about the specifics of their teaching practice and student learning, share ideas and support each other as they attempt to implement ideas from the professional development programme...programmes influence the level of professional community activity to the extent that their designers build in active learning processes.

The level of content focus continues to be important...feedback starts to have a significant effect over and above the strong effects of knowledge and practice...the influence of active learning carries through to influence teacher efficacy...this feature [has] a pervasive and generative influence on factors that increase teachers' confidence and ability to meet student needs [beyond] specific changes in practice...

...there were...strong relationships between content focus, active learning, collaborative examination of student work and follow-up...programmes with an emphasis on the subject matter that is being taught, how it is learned and how to teach it, tend to facilitate more active school-based professional learning processes...programmes that did build opportunities for follow up support into their design were more likely to provide opportunities for teachers to receive feedback as they tried out new skills.

...School support influenced the extent of active learning, follow-up and feedback...[and] had substantial, though indirect effects on the extent to which programme outcomes are achieved. Though not a design feature of most professional development programmes...the level of school support comes through the analysis as an important enabling condition with a significant shaping influence on the opportunities to learn that teachers experience.

...time span...had a significant effect on the amount of time programme participants...spent meeting informally with other participants in related activities, such as joint lesson planning and developing curriculum materials. These structural features of...time span have substantial, though indirect, effects on programme outcomes.

...the most consistent effects were content focus (especially those that focused on how students learn the content and on methods to teach the content), active learning, and follow up. The fact that the influence of active learning carries through to influence teacher practices and teacher efficacy, net of the effects of other [influences] is particularly noteworthy (Ingvarson et al, 2005:15).

The key findings from the Ingvarson et al (2005) study include the following:

- active professional learning increases teachers’ confidence and ability to meet student needs;
- the level of content focus, teaching methodology and knowledge about how students’ learn is important;
- professional community has a significant impact on knowledge and practice;
- the level of structural support is an important enabling condition that has a significant shaping influence on teachers’ opportunities to learn; and
- professional learning can have a powerful impact on student learning, if it has a strong direct focus on the latter.

Simply providing teachers with ‘background’ knowledge does not make them good teachers—it only provides them with a potential to be good teachers. The fundamental issue for teachers is ‘how do I formulate my new knowledge in a way that will enhance practice and methodology required for teaching, with knowledge about how students learn embedded in this knowledge’?

In the case of improving learning for boys, this means, to take literacy as an example, that teachers need access to knowledge about teaching the fundamentals of literacy (reading,
writing, oral, aural, and critical elements of literacy) that are relevant at each stage of boys’ educational development. To support this, teachers need diagnostic tools that enable assessment of where each student is up to in terms of their literacy development, so they can provide the learning environment and address the skills and knowledge that the student requires at whatever stage of development they have reached at that time.

The first step in this process is to provide teachers with access to the content, methodology for developing the learning environment, the knowledge of the skills and knowledge appropriate at each stage of development and the strategies that enhance student learning, in this case, for boys who may be reluctant learners or developmentally delayed. The significance of the task of providing this knowledge becomes clear when it is recognised that many secondary teachers claim to know relatively little about literacy.

PROFESSIONAL LEARNING IN BELS

This section considers the ways in which professional learning in BELS projects displayed characteristics of communities of practice, building knowledge around the education of boys. Wenger (1998) suggests that indicators of a community of practice include sustained mutual relationships, shared ways of engaging in doing things together, rapid flow of information and propagation of innovation, and knowing what others can do.

BELS funding enabled clusters of schools to release teachers to work together, and many cluster reports indicated that professional learning teams had been established at the cluster–level. These teams used regular meeting times to share and reflect on practice across schools, particularly in non-rural communities. Most rural clusters had significant difficulty in getting together. Two national clusters, comprising schools in several states, arranged for large numbers of staff to meet at occasional face-to-face conferences, with regular teleconferences and email used to maintain contact through the duration of the project:

> Common language to discuss and implement [the project] has created a more positive attitude through the Centres. (Youth Education Cluster, YCP4 2005)

> Moderation of student work is emerging as a way of enabling conversations between teachers to build a common understanding of boys’ writing, interests and next steps. (Distance Education Cluster, YCP4 2005)

To support professional learning, the National Project Management Team (NPMT) published eighteen electronic newsletters which were widely distributed to educators in and beyond BELS schools. Some clusters developed strong local communication strategies, such as distribution of monthly newsletters containing relevant, explicit professional reading to teachers using the National Quality Schooling Framework (NQSF) website (Blacktown Cluster, YCP4 2005), and newspaper and newsletter articles on parent workshops and guest speakers on Boys, Literacy and Books (Bayside Cluster, YCP4 2005).

The life of the NQSF website was extended for the project with a view to fostering a true community of practice looking outward. Resources were searchable by relevant topics, and after each progressive phase of reporting by each cluster was quality assured, it was made available as a resource for schools both inside and outside BELS to access. In addition, each cluster was encouraged to use the Think.com website (available to all Australian schools at www.think.com) to promote discussion and share knowledge and experiences across schools in the project. This was used by some clusters, but did not achieve the anticipated level of use. The major use of Think.com in BELS was for the national team to facilitate professional development activities with teachers and researchers, using teleconferences, synchronous and asynchronous text-based communication, and towards the end of the project, podcasting.
Clusters that developed successful projects commonly reported a desire to sustain the gains made through the communities generated in the project, and to improve teaching for all students:

The collegiality that emanated from this project augurs well for continued teacher-led projects in schools. Perhaps, now, a sustainable model of shared leadership can be created in each school in the cluster, so that teaching and learning approaches can be continually refined to support both boys’ and girls’ learning. (Adelaide Cluster, YCP4 2005)

On the other hand, other clusters found that bringing the whole community on board required continual effort:

One of the goals of the project was to change the culture of our school communities so that the Creative and Performing Arts were regarded as being as worthwhile and important as academic and sporting activities in schools, and that it become commonplace for the boys to be involved in these activities rather than it being the preserve of the girls. While we have encouraged and so far, succeeded in increasing participation and enthusiasm of boys’ in creative activities, we have found it difficult to motivate our parent communities. We realise extra effort, resources and input is needed at this level if the changes we are implementing have a chance of remaining in place and really making a difference. (Collector Cluster, YCP4 2004)

Many clusters wrote of their plans to sustain the benefits they had observed during the project. The rapid flow of information was facilitated by the NQSF website and email communication, which clearly helped in finding out “what others are doing”. A higher level of engagement in the online environment occurred in non-metropolitan schools, demonstrating that online communities of practice provide access to the research and knowledge base, and opportunities for knowledge creation, which cannot be readily accessed otherwise.

Professional learning requires confidence and a desire to share with others in the profession. In addition to the professional connections facilitated through the BELS network, individual BELS projects used various strategies to create a sense of identity. Several clusters appropriated the Lighthouse symbol, either on documents or as a physical artefact, to emphasise membership of the Boys’ Education Lighthouse Schools project. The BELS identity was supported by the project signage at all schools. A Northern Territory teacher reported that he felt proud to arrive at school and see the sign each day, knowing that he was involved in the project.

However, there is no simple answer to the question of ‘who we are’, and this was highlighted in projects involving both Indigenous and non-Indigenous people:

The programme must involve Yolŋu and non-Indigenous people in the planning, development, implementation and evaluation. Non-Indigenous people who are identified for the programme need to have good cross cultural skills, be prepared to be flexible, to learn and work in different ways and understand the importance of Yolŋu-driven curriculum and pedagogy. (Darwin Indigenous Cluster, YCP4 2005)

Cluster leaders faced a major challenge to find people with the required characteristics in the locations where they were needed, and to develop programmes to skill others quickly. The resourcing of projects allowed teachers time to share their expertise and enabled rich professional learning to take place:

Perhaps the most interesting realisation that has arisen from the first part of our project is the very strong re-affirmation of the skills and capabilities of we [us] teachers. Again, we have been forced to look closer to home and within our own ranks of fellow teachers to find support and expertise and have discovered wonderful talents and opportunities, with only the cost of a relief day to access
them. The luxury of TIME and MONEY (for example, to provide transport for students to different venues) is probably the main ingredient missing in our normal teaching lives and one which, we now realise, can make such a difference to planning and achieving outcomes. (Collector, YCP4 2004)

Several clusters reported celebrating “the many successes joyfully and collectively” (Kempsey Cluster, YCP4 2004) to enhance the importance of teacher professionalism and community building, while more than one cluster was surprised at the sense of identity and the expertise that developed:

The most unexpected outcome of the project within the cluster was the strengthened collegiality and sense of ‘team’ that developed amongst the teachers who participated. (Adelaide Cluster, YCP4 2005)

Knowledge gained through the BELS project has assisted the growth and team spirit of the cluster with teachers working together for common outcomes. (Flora Hill Cluster, YCP4 2005)

A project such as BELS requires teachers to introduce strategies to improve their practice, and reflect on the outcomes. “Teachers were most receptive to the hands-on approach to teacher in-service” (Bribie Island, YCP3 2005), and “schools need to look outside the square to find ideas for improving outcomes for students, especially when barriers are identified” (Palmerston North Cluster, YCP4 2004). Clusters similarly acknowledged the importance of reflection in creating knowledge:

It is often the part that we leave—we’ll often try things as practitioners, go and utilise them in the classroom and very briefly we’ll comment as to whether it worked or not. This project makes people critically reflect on which parts are important. (Ample Cluster, YCP4 2005)

In their communities, BELS projects engaged optimistically with issues of gender construction, ethnicity and socio-economic identity, and provided authentic learning experiences situated in students’ everyday life and teachers’ work. In some cases, teachers were surprised by their own abilities, and saw that they had much more to contribute than they had anticipated. The element of reflection showed many teachers that it was valuable to make time to review data, share progress and engage in professional learning through the process of writing about their project.

Based on research, professional reading and practice, many clusters initially developed a vision and common goals, or did so as the projects developed. Schools tackled the whole-school approach to boys’ education in different ways. Some schools in the clusters incorporated a sub-committee into existing structures, while others set up a task group to manage their projects. One cluster was intent on building collective “moral purpose, setting into place structures for success” (Blacktown Cluster, YCP4 2005). Another cluster identified three interrelated goals and developed a shared understanding so the project had a clear purpose, which enabled the cluster to go “five miles deep rather than five miles wide” (Hampton Cluster, YCP4 2005). In their advice to others running similar projects, clusters reported that “Principals need to be committed to the whole project and ensure that follow-up occurs” (Sydenham/Delahey Cluster, YCP4 2004).

A true community of practice looks outward to other communities and seeks to influence the world. At a conference of the Distance Education Cluster, numerous teachers reported that their daily work was isolating, and they valued national collaboration with teachers in a similar setting. One said “change is more effective when more are united”. Another reported on a locally-developed resource “that is both useful for our school, that will be transferable to other like-schools, and that informs education across Australia”.
Attitudes such as these demonstrate a mature community of practice is forming. This is echoed in the following description of a conference convened by the Ample Cluster, and its intention to impact on State Government policy:

Over 200 teachers attended and all of the cluster schools provided a workshop. This was an important professional development event for the schools in this cluster; many had not previously been involved in cluster events such as this; many had not previously presented their work outside of their own school context. The conference evaluation indicated that teachers really enjoyed hearing from their colleagues. The cluster also invited officers from the [State Government] Department of Education and Childrens’ Services (DECS) and representatives from other clusters [in the conference]. It is hoped that this conference has had some impact on the way DECS devises policy on the education of boys in the future. (Ample Cluster, YCP4 2005)

The BELS cluster model was itself an innovation for many schools which had previously either focused on their own projects or competed with partners. To achieve success, leadership through senior staff allocating time for the task, was important. The quality of the cluster reports, generated from practice that was undertaken in partnership with academics and researchers, indicates that this model has the potential for rich, professional learning that is situated in teachers’ work. A project using this model, which focuses on curriculum implementation and student learning outcomes, is an authentic vehicle for teachers’ learning. The knowledge generated can also inform policy development at local and national levels.
CHAPTER 3

THE KNOWLEDGE-BASE

As the findings from visits to clusters by members of the National Project Management Team (NPMT) started to emerge, it became clear that there was a need to look again at what research evidence tells us about gender differentials. For example, the majority of clusters reported in the first stage report of their trial that their strategies focused on relatively small groups of boys with particular learning-related issues. For schools, the issue was not one that required a focus on ‘all boys’, rather schools focused on boys who were not thriving in the current school context.

Clusters sought to address specific issues for boys with significant literacy issues, who had disengaged from schooling, had major behaviour and disciplinary issues, or were reluctant to participate in a range of school activities, such as boys not putting themselves forward for school leadership positions. The focus on these targeted groups of boys ran counter to the more popular perspective that ‘(all) boys are educationally in trouble’. In addition, schools reported that they were developing strategies based on the advice from various professional development consultants, including some that clearly did not have a sound foundation in the educational research literature.

The task of improving learning outcomes for boys, particularly for disadvantaged boys, needs to build on fundamental teaching and learning strategies that have a strong provenance in international research. It is important that core teaching and learning strategies are given prominence in schools and that active professional learning programmes are introduced to equip teachers to critically appraise the many ‘popular’ strategies that may have a tenuous connection to research.

POPULAR MYTHS

Some of the professional development programmes attended by teachers emphasised differences in the way boys and girls learn. The NPMT undertook research to ascertain the basis for professional learning programmes that were based on knowledge about physical differences in male and female brains, the lighting and colour of school learning environments, the level of ‘structure’ most effective for boys’ learning, and the range and magnitude of gender differences relevant to learning at school.

The main findings from the research into brain-based approaches to learning indicated that the educational implications at this stage should be treated with considerable caution:

This field is still in its infancy; much of the data, in cognitive science, neuroscience, and genetics is incomplete. Far too often new findings are misunderstood and disseminated by the press and other media—setting in motion a series of chain reactions and the establishment of myths that are sometimes both entertaining and damaging…otherwise intelligent school administrators have said that they need to repaint classrooms in pastel colours because brain-based research indicated that children learn better in a pastel environment. That’s nonsense. (Fisher, 2004).

The number of discoveries from brain research that have been exploited by the learning sciences is still slim…Current research methods in cognitive science necessarily limit the types of questions that are addressed…the type of educational tasks favoured by society will remain more complex than the ones that might suit cognitive neuroscience (OECD, 2002: 48).
There is a gulf between current science and direct classroom applications. Most scientists would argue that filling the gulf is premature. Nevertheless, at present, teachers are at the receiving end of numerous ‘brain-based learning’ packages. Some of these contain alarming amounts of misinformation, yet such packages are being used in many schools. (Goswami, 2006).

The NPMT was unable to find any research data of relevance to indicate that levels of or different types of lighting have an effect on learning for either boys or girls. Further, none of the small number of BELS Lighthouse projects that implemented strategies based on changing the lighting or the colour schemes of student learning areas found any positive impact that could be attributed to these factors.

Many professional learning programmes provided to teachers focused on the supposed higher levels of structure that boys require in learning to write, read and learn appropriate behaviour. UK research has been interpreted as supporting this position (Frater, 1997, 2002).

The interpretation of the need for structure as gender related is probably an error. The main research on structure in learning that is relevant is the role of scaffolding in learning. This research indicates that two important groups of individuals benefit substantially from high levels of scaffolding—learners who are novices in the field in which they are learning and learners who have weak or under-developed skills in the executive management of their own learning (Bransford et al, 1999). Interpreting the evidence that shows some boys have problems with their learning as boys generally have problems with their learning, fails to recognise the fact that boys who have difficulties with their learning are most often both novice learners and have weak executive control over their own learning. As such, they are expected to benefit from high levels of structure in the learning process. This is the case for all learners, including girls, regardless of their age.

Once boys, and other learners, move beyond the novice stage in the field in which they are learning and also develop adequate executive learning skills to manage their learning, they can benefit from less structured learning environments. Teaching in a normal classroom is a very challenging task, because the span of student development represented includes the full range from novice learners to ‘expert’ learners. The continuum between the extremes of these two groups may represent up to four years of development during childhood.

The key point is that the need for structure in the teaching and learning process is not driven by the learner’s gender. Boys (and girls) in the lower tail of the learning distribution need a high level of structure to learn, but this is not because they are boys, it is because they are novice learners with an underdeveloped capacity to manage their own learning. For this reason, teachers need to provide a much higher level of attention and input for these boys than that required by their classmates.

RECOGNISING THE MATURITY OF YOUNG PEOPLE

A significant factor in boys losing interest and disengaging in the later primary and early secondary years is their perception that schooling is of little relevance to what they understand to be their future (Trent & Slade, 2001). In some cases the curriculum itself simply fails to make the link between content and skills and the potential futures of individual students, and in other cases boys simply have little or no conception of what their future might be.

A related problem appears in the middle secondary years when many boys, and girls, engage in part-time employment. In their work environment, these students are essentially engaging in the adult work environment. When students are at school, however, they are
not treated in the same adult way as they are in the work environment. As an example, in most schools a student ‘would get into trouble’ if they were to observe that a printer had run out of ink and took the initiative to go to the store room, locate a replacement cartridge, and replace the extinguished cartridge in the printer. They probably routinely do this at home, and if they do not replace the cartridge in a similar situation when they are at work in their part-time job, they are likely to be considered as not being ‘up to the job’.

DIFFERENT DISTRIBUTIONS FOR BOYS & GIRLS

A key characteristic of data on a range of male and female characteristics is that the male distribution is often wider spread than that for females. Floor and ceiling effects in many assessments and tests truncate the full range of learning achievement. As a result, there is sometimes evidence of some ‘clumping’ for boys in the lower ‘tail’ of the distribution.

This fits with the finding that a higher proportion of boys, than girls, do not meet national benchmarks at Year 3 and 5 in literacy. Further, it provides an explanation as to why we often find that there are more boys than girls in early-years and other primary school remedial reading programmes. However, the evidence that there are more boys in the lower tail of the distribution does not in any way warrant the interpretation that, overall, boys are achieving at a lower level than girls.

This supports the arguments of Martino, Lingard & Mills (2004) and others that the role of programmes to support boys’ learning should be to support those who are at-risk, because it is these boys who are over-represented in the lower tail of the achievement distribution.

GENDER DIFFERENTIALS IN LEARNING OUTCOMES

Figure 1, based on students in all State schools in Victoria, shows that in early–years reading, boys have a slightly lower median-score than girls and that the overall distribution for boys is marginally shifted downwards. However, it is important to determine whether the difference between boys and girls is of an educationally substantive magnitude. One way to assess this is to consider the achievement of students twelve months later, at the end of Year 2.

Figure 1:Differences in Reading Achievement for Boys and Girls at the End of Year 1

94% of students reach Level 20 by the end of Year 2

25% of students reach Level 20 by the end of Year 1

By the end of Year 2, 94% of all students reach Level 20. Hence, the growth for student’s achieving at Level 6 at the end of Year 1 is of the order of 14+ Levels by the end of Year 2. The difference between boys and girls at the end of Year 1, therefore, is very small in terms of the period of growth that it represents — less than one month of difference in learning between boys and girls.

This small difference runs counter to the understanding of many teachers and parents drawn from their observations that there are more boys than girls in early-years remedial classes. As indicated above, there is no inconsistency between having more boys in remedial programmes and boys overall achieving at a similar level to that for girls.

Figure 2 provides evidence about the differentials in various areas of literacy and mathematics across Years 3–9. Three different statistics are compared at each year-level: the difference in scores for boys and girls at the 10th percentile point; at the mean; and at the 90th percentile point in the respective distributions. Negative scores (ie. the bars below the zero-difference line across the centre of the chart) indicate that boys have lower scores than girls at this point in the distribution.

Figure 2a: Differences in Reading Achievement for Boys and Girls

![Figure 2a: Differences in Reading Achievement for Boys and Girls](chart)

In Reading (Figure 2a), boys have lower scores than girls at each point in the distribution, i.e. the 10th percentile, mean, and 90th percentile points are lower for boys than for girls. The difference between boys and girls in the mean score is 4 months of learning at Years 3 and 5, 3 months at Year 7, and 2 months at Year 9. Thus the difference in the mean level of achievement on the national benchmark tests is in the range of 2–4 months of learning. Whilst this is definitely not a zero difference, it is nevertheless relatively small when contrasted with the differences of 6–9 months of learning difference at the mean in Writing (Figure 2b) and 5–8 months of learning in Spelling (Figure 2c).

In terms of differences in literacy outcomes, these data suggest that the main aspect of underachievement for boys is in Writing and Spelling, and that the differences in Reading are relatively small. In the primary years (Years 3 & 5) boys Reading scores are on average about 4 months of learning below those of girls, and in the secondary years (Years 7 & 9) this differential is reduced to three months or less.
The differences between boys and girls are largest in the lower tail of the distribution for Writing, that is, there are more boys than girls achieving at the lowest levels. This feature of the outcomes in Writing is consistent across Years 3–9. A similar pattern is evident for Spelling (except at Year 9), but is not evident in Reading. There are not significantly more boys than girls in the lower tail of the distribution for Reading, but there are fewer boys in the upper tail of the distribution.

In contrast to the three measures of literacy, the differences in the distribution for boys and girls in Mathematics are small, with boys achieving at 2–4 months of learning higher than girls at each point in the distribution. The proportion of boys and girls in the lower tail of the distribution is similar at all year-levels, but there is a marginally higher proportion of boys than girls in the upper tail of the distribution.
The data presented in Figures 2a–d is for 2006. Figures 3a–d provide the mean scores for boys and girls over the period 2003–2006 — thus it allows us to ask whether the differences in achievement between boys and girls are becoming larger or shrinking over time.
The differences in the mean scores for boys and girls in Reading (Figure 3a) at each year-level were relatively stable over the four-year period—the mean score for boys was in the range of 2–5 months below that for girls at each year-level. There is no indication that boys were losing ground to girls over time at any year-level.

The differences in mean scores for boys and girls in Writing (Figure 3b) and Spelling (Figure 3c) over the four-year period were also stable at each year-level. However, the pattern for the gap in mean scores to increase at each stage of schooling—more so for Writing than Spelling—is evident in each of the four years. Thus, although there is no evidence that boys were losing ground to girls in Writing and Spelling over this four-year period,
period, there is evidence that boys lose ground to girls Writing and Spelling as they progress through their schooling.

The difference in the mean scores for boys and girls in Mathematics (Figure 3d) shows a stable pattern, with boys achieving 1–3 months of learning higher than girls. There is no evidence of the gap widening or closing as students proceed through the stages of schooling.

Figure 3d: Trends in Gender Differences in Mathematics

Although data is not available to investigate the aspects of Writing and Spelling that are the source of the gender differentials found above, some light can be shed on this issue by considering Assessment Tools for Teaching and Learning (ATTL) assessment data for the early years of secondary schooling in New Zealand (Figures 4 & 5). Although girls scored higher on all components of Writing — the only differences of substantive relevance are in the functional areas of Punctuation and Spelling, and in the processing areas of Writing to Instruct or Persuade, Recounting, Explaining and Analysing.
Figure 4: Gender Differentials in Different Components of Writing Skills (New Zealand data)

Source: Data and graphic provided by Professor John Hattie, University of Auckland.

Figure 5: Gender Differentials in Different Components of Mathematics Skills (New Zealand data)

Source: Data and graphic provided by Professor John Hattie, University of Auckland.
The achievement of Australian students in international studies has been analysed in terms of gender differentials in learning outcomes. Figure 5 shows that there is no substantive differential between boys and girls in New Zealand in mathematics in the early secondary years (none of the differences in the mean for boys and girls is equivalent to an effect size of 0.2 or greater). The data show that not only is there no overall difference for boys and girls, there is no difference in any of the individual components of mathematics that are assessed by the assessment instruments, after adjusting for age, grade, socio-economic status (SES), and home educational resources (Rowe, 2006).

The PISA 2000 data indicates that there was a statistically significant difference in mean achievement in Reading, in favour of girls in all States and Territories and the PISA 2003 data indicates a similar result, with the exception of no differential in the ACT. The mean for both boys and girls was above the overall OECD average in every Australian State and Territory in PISA 2000, except the Northern Territory, and except for Queensland and the Northern Territory in PISA 2003.

Figure 6 summarises the data for Australian students in PISA 2003. Reading is the only one of the eight cognitive achievement measures that shows any substantive difference for boys and girls. There is no substantive difference for boys and girls in the PISA 15 year-old population for measures of achievement in Mathematics, Science or Problem Solving.

Figure 6: Differences in Achievement Levels for Boys and Girls in PISA 2003

The TIMSS 2003 data also found no differentials in the mean achievement of boys and girls in mathematics, except in the ACT where boys achieved a higher level than girls. There were no differences in TIMSS 2003 between boys and girls in science except in the ACT and SA, where boys had higher levels of achievement than girls (Rowe, 2006).

Much has been made of the gender differential for Australia in reading in the PISA 2000 and PISA 2003 studies. In 2000 the difference in the mean for boys was 39 points and in 2003 it was 33 points — the standard deviation for the distributions was standardised to 100. Whilst 33–39 percent of a standard deviation of difference in means would normally
be considered to be substantial, the evidence presented above is that the difference is of the order of 3 months at Year 7 and 2 months at Year 9 (Figure 2a). Hence, caution needs to be exercised in interpreting the PISA result. Many factors could explain any difference in the PISA results and national benchmark tests in Reading — in particular, differences in the range and depth of the skills and knowledge assessed by the respective assessment instruments.

INTERNATIONAL EVIDENCE ON GENDER DIFFERENTIALS

Evidence on gender differentials across six domains; cognitive variables, such as abilities; verbal and non-verbal communication; social and personality attributes, such as aggression and leadership; psychological wellbeing measures, such as self-esteem; and motor behaviours, such as throwing distance; and a range of miscellaneous areas such as moral reasoning, has recently been published (Hyde, 2005). The research analysed 128 meta-analyses which reported 7,065 separate studies of differences between males and females across all age groups.

Seventy-eight percent of the male–female differences in the 128 separate meta-analyses were found to be small or close to zero. The areas in which gender differentials were found to be zero or very small include reading, verbal reasoning, abstract reasoning, numerical reasoning, mathematics, and communication skills.

Females were found to have a small advantage in writing, spelling, language and perceptual speed. Males were found to have some advantage in the following areas: mechanical reasoning, spatial reasoning, assertive speech, verbal aggression, self-esteem and body-esteem. However, the major gender differentials were areas in which males had considerable advantage, including: physical aggression, aggression in real world settings, grip strength, throw velocity, throw distance, sprint speed, and activity level.

EFFECTIVE TEACHING

There is no evidence to show that Australian boys think and learn in any way that is fundamentally different to their counterparts in other Western countries. They may learn more or less than in other countries because the curriculum addresses specific issues differentially or because teachers use more or less effective strategies, but the fundamental cognitive processes of learning are no different.

Very few of the professional learning programmes provided to or accessed by clusters were principally focused on the core knowledge about effective teaching and learning. It was as if boys need totally new and different teaching, rather than tuning known effective teaching strategies to the specific learning capacities and preferences of boys at all points in the spectrum of learners. Research in progress by Professor John Hattie based on meta-analyses of thousands of original research studies and dozens of different teaching strategies is marked by the very low incidence of statistically significant gender interactions—indicating that in most cases teaching strategies have similar impacts for both boys and girls.
The following is a very brief synopsis of the international research on strategies that have strong support in the research literature. This synopsis is based significantly on the work-in-progress by Professor Hattie, who has collaborated with a number of researchers to undertake systematic meta-analyses of the practices and conditions that influence student learning. Over the past 10 years, Hattie and colleagues have undertaken research that draws on 180,000 individual research studies covering most known strategies relevant to learning in the years of schooling. Collectively, the studies represent “50+ million students” (Hattie, 1999). The research uses a measure of impact known as ‘effect-size’ to evaluate the average impact on learning of each strategy:

An effect-size of 1.0 indicates an increase of one standard deviation, typically associated with advancing children’s achievement by one year...or improving the rate of learning by 50%...a [strategy with an] effect-size of 1.0 [would show an improvement in] 95% of cases...[the average outcome for students] would exceed 84% of the outcomes for students [not being taught via the strategy].

(Hattie, 1999: 4)

A benchmark of an effect-size of 0.4 is used as a cut-point to divide innovations and strategies into two groups—less effective and more effective. Thus, strategies that are capable of improving average learning outcomes by 3–6 months of learning were classified as successful. To put this in perspective, any strategy that is capable of closing the gap of 8 months of learning in average achievement in Writing at Year 5 will have to be one of the most powerful strategies ever developed in education. To improve the chances of success, the gender differential in Writing outcomes needs to be tackled well before Year 5, before the gap between boys and girls has reached this size.

The most powerful factors influencing learning are:

- critical innovations;
- feedback to students about their learning; and
- setting appropriate and specific challenging goals.

Critical innovation is “a constant and deliberate attempt to improve the quality of learning on behalf of the system, principal and teacher” (Hattie, 1999: 10).

Feedback to students is infrequent and often of poor quality in many schools. Of the 1,800 or so minutes that students are in formal learning environments each week, less than 5 minutes individualised feedback is provided by teachers to each individual student. Strategies that increase the level and quality of feedback can substantially improve learning outcomes. Quality feedback means “providing information about how and why the child understands and misunderstands, and what directions the student must take to improve” (Hattie, 1999: 10).

Setting appropriate and specific challenging goals means going beyond encouraging the student to ‘do their best’—the magnitude of challenge set by goals is the most critical component of goal setting (Locke & Latham, 1990). Students need to be informed “as to what type or level of performance is to be attained so that they can direct and evaluate their actions accordingly...feedback allows them to set reasonable goals...track their performance...[and make] adjustments [to] effort, direction and strategy...as needed” (Locke & Latham, 1990).

It follows from the above that school-based innovation projects that focus on feedback and setting challenging goals have very high potential to improve learning outcomes. Further, the most effective strategies apply across most areas of learning and at all stages of educational development. Boys who are at-risk have not reached the same level of educational development as their peers, but the principles of teaching and learning are the same for them as for all other students.
At some stages of their cognitive and social development, students may need higher levels of critical feedback and different types of feedback — if they do not receive this at the required time, they are deprived of one of the primary resources they need for learning. Left to their own devices they seek feedback from other sources, often exhibited as attention seeking behaviour, otherwise known as ‘playing-up’ and being ‘naughty’. The problem with their strategy in this case is that the feedback they elicit from peers, teachers and parents is not the type or quality of feedback required to support their engagement in learning.

The above critical features of effective teaching and learning are embedded in the strategies that teachers use in a range of ways. Most successful teaching strategies contain them to some degree. Figure 7 indicates strategies that can have a powerful impact on learning (effect size > 0.4) and those which have only a small impact (0 < effect size < 0.4).

Figure 7: Practices that have a Powerful Impact on Learning

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13 Reinforcement</td>
<td></td>
<td></td>
<td>0.34 Higher-order questions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.94 Corrective feedback</td>
<td></td>
<td></td>
<td>0.31 Computer assisted instruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.79 Differentiated homework</td>
<td></td>
<td></td>
<td>0.28 Same homework for all</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.76 Co-operative learning</td>
<td></td>
<td></td>
<td>0.18 Programmed instruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 Peer tutoring</td>
<td></td>
<td></td>
<td>0.18 Ability grouping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.49 Teacher professional learning</td>
<td>0.06 Team teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.46 Parent involvement</td>
<td>-0.12</td>
<td>Watching television for more than 10 hours/week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40 Tutoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Hattie (1999)

All of the BELS clusters engaged in significant levels of professional learning and sought to directly translate this into improved practices for improving learning. However, relatively few clusters focused on the most powerful practices above. Many clusters utilised various forms of mentoring and peer tutoring to support learning for boys. Mentoring provides a specific form of feedback to the student in the context of them engaging in learning: “I am here for you”, “I believe in you”, and “I will do my best to help you achieve” (MacCallum, Beltman & Palmer, 2005). A number of mentoring strategies are recommended by West (2001), Noble and Bradford (2000), and were evident in the BELS Projects:

- year 12 boys mentored younger underachieving boys;
- underachieving students chose a teacher mentor to talk to;
- former students visited the school to encourage reading and/or to show pathways to academic success;
- older boys listened to younger boys read;
- boys engaged in paired writing sessions; and
- boys were paired with members of the local community.

Martin (2002) identified the following supporting conditions for successful mentoring of boys:
- clear guidelines and parameters for the mentoring relationship;
- mentors and students need to be matched to meet the specific needs of the student;
- background checks of mentors and issues related to duty of care need to be undertaken from the outset;
- mentoring should not promote unrealistic expectations;
- mentoring within the school must not be seen as socialising — it must be explicitly set-up as a learning environment; and
- the school at all levels must value the mentor programme.

DISCUSSION

Although the most effective teaching strategies discussed above may not have the ‘sex appeal’ of new ‘brain-based’ and other ideas permeating the current atmosphere of professional learning, they have a proven track record and will almost always deliver if appropriately implemented. A more extensive review of these and other effective teaching practices is available in Cuttance (2000).

A pre-requisite to closing any gender gap in learning is the adoption by schools of a hard edge evidence-based approach to innovation. The dominant professional paradigm based on ‘I reckon’ assessments of whether particular strategies have worked can never provide the basis for making progress in terms of improving learning outcomes for students — because, it grossly overestimates the effectiveness of most strategies. As a result, the profession does not know which practices need to be disestablished—because they are ineffective or only marginally effective—and lacks the resources to refocus effort on the search for practices that can make a real change.
CHAPTER 4

AREAS OF FOCUS AND STRATEGIES DEVELOPED BY BELS CLUSTERS

This chapter provides an overview of teachers’ perspectives of the areas critical to improving boys’ educational outcomes, and the strategies that were developed to address these concerns.

BELS was based on a ‘teacher-as-expert’ approach, whereby clusters were required to identify the issues they perceived as having a negative impact on boys’ learning outcomes, followed by the development and implementation of strategies that would be effective in addressing such barriers to learning. As was discussed earlier, this approach facilitated the development of strategies in a field where few such strategies previously existed, and it allowed for the creation of strategies that addressed boys’ education problems that were particular to a specific location or context.

A wide range of strategies to improve boys’ learning outcomes were implemented. A whole-school approach to addressing boys’ educational issues was frequently expanded to include external community groups as well.

OVERVIEW OF APPROACHES USED

While many projects contained elements of a large number of the Ten Guiding Principles for Boys’ Education (Lingard et al, 2002) a decision was made as to which were the dominant foci, and the degree of importance of each expressed as a percentage (Figure 11). Literacy was a significant focus in 27% of cluster projects, closely followed by pedagogy (25%), and engagement (17%). Relationships, role models, learning styles and masculinities (29%) and ICT (3%) had a low focus. None of the clusters focused on the principle of Researching Boys.

The majority of clusters designed multi-faceted approaches. Literacy was the most common focus used in conjunction with elements of one or more of the other Ten Guiding Principles for Boys’ Education. Analysis of the distribution of cluster foci against other variables such as region, school system, state, or school size, indicated no significant correlation.
BELS was unique in that it allowed teachers in schools the freedom to identify the issues most pertinent to addressing boys’ educational outcomes in their particular context, and the appropriate strategies for meeting those needs. As such, BELS represented a valuable method of validating or questioning directions in boys’ education, currently being advocated by research.

Only a small proportion of the strategies employed by schools were based on pre-established programmes (e.g., Rock and Water, Stepping Out) — more than three-quarters were purpose-designed by schools. The high proportion of purpose-designed strategies indicated the commitment and ability of teachers to address boys’ learning outcomes through approaches that were relevant to their particular situation. With a paucity of pre-established intervention programmes available, it is probable that without the funding made available through the BELS Initiative, few interventions would have been developed and implemented.

LITERACY & PEDAGOGY FOCUSED PROJECTS

As indicated above, literacy and pedagogy encompassed half of all strategies developed in the BELS cluster projects. This section provides a snapshot of a selection of the literacy approaches that were implemented.

The **Mildura Cluster** developed a *Supporting Writers for Authentic Purposes* (SWAP) programme, a strategic framework for engaging boys with their writing. The project drew on student interests to generate writing activities. It involved using a range of templates and rubrics to support students, and utilised guest speakers and excursions to introduce a writing topic and to act as ‘real’ resources for data gathering. The boys produced a newspaper that provided them with a purpose for writing and a peer audience. The project
strengthened the chain of language used by boys, and promoted their learning and literacy in a practical social capacity.

The **Goldfields Cluster** developed the **Code Breakers** programme based on the Victorian Early–Years Literacy Model. The programme focused on students at the extreme lower end of literacy achievement where standard testing and benchmarks cannot be used, and for whom the **Reading Recovery Programme** often proves to be ineffective. The programme worked with boys in four specific task areas: (1) guided reading of texts that had a strong phonetic component; (2) spelling activities related to the phonetic pattern from text; (3) re-reading of previously studied texts; and (4) revision of phonetic patterns and spelling of non-phonetic high frequency words.

The **New Town Cluster** provided the expertise of its Lighthouse School to model four approaches to improving boys’ educational outcomes to partner schools. These aimed to provide boys with the skills required to participate in learning through authentic, hands-on experiences that motivate, engage and inspire them. The project also provided teachers with support through practical mentoring.

The approaches that had proved effective in improving boys' learning at the Lighthouse School over recent years were shared with partner schools through professional development sessions or by a lead staff member conducting activities with boys in partner schools.

The **First Steps** and **Stepping Out** literacy programmes, peer-tutoring, literacy teaching resources for at-risk boys, and case conferencing strategies were core programmes included in a Centre of Best Practice.

A **Music Writing Programme** involving student performances based on interpretation of thematic music texts, strucured process of code breaking, the development of ideas, and exploration of genre. The various applications of the genre were explored in depth, and students’ emotional and aesthetic responses examined. High-school students mentored younger boys.

The **Bribie Island Cluster** developed a **Balanced Literacy Block** featuring hands-on activities. **Stepping Out** strategies were incorporated into the programme. All teachers were trained in behaviour management based on the **You Can Do It Programme**.

The **Mirani Cluster** developed the **Kick-Start to Literacy** project using a set of hands-on activities for underachieving boys and those who had attitudinal difficulties in the middle years of schooling. The programme provided an opportunity to learn life-skills by working in real-life job contexts. Students worked with male teachers in a workshop on practical problem solving tasks involving 2-stroke motors. The boys were required to complete electronic paper work—job-cards, timesheets and reports—on their learning each week and complete written tasks, which were supported by various levels of scaffolding.

The **New Town, Mt. Claremont, and Karijini Clusters** used the **Stepping Out Programme** as a professional learning resource to equip teachers with approaches, processes and strategies to improve students’ literacy and learning outcomes. The programme provided a range of practical learning and teaching strategies to cater for the diversity of needs and abilities of adolescent learners. The **Stepping Out Programme** contains three modules: writing; reading and viewing; and listening and speaking and can be implemented to include community interaction activities, and fun elective style outings or adventures.

The **Sydenham/Delahey Cluster** used a **Literature Circles** strategy focused on small groups of students gathering together to discuss a piece of literature in depth. Students discussed events and characters in the text, the author's craft, and their own personal experiences relevant to the story. The project provided an enjoyable way for students to
engage in critical thinking and reflection as they read, discussed, and responded to texts. Students collaboratively reshaped and built their understanding as they constructed meaning with other readers. Literature Circles guide students to a deeper understanding of what they read through structured discussion and extended written and artistic response.

PEDAGOGY & LEARNING STYLES

Most clusters implemented an action-learning approach to teacher learning through seminars and workshops interspersed with the trialing and development of their strategies. The Albury/Wodonga Cluster used four discipline-based Professional Development programmes: (1) motivating boys in the mathematics classroom; (2) using drama techniques to engage boys and improve literacy; (3) improving literacy through creative writing; and (4) working with students who suffer from behaviour avoidance.

The Beachside Cluster undertook a Boy-Friendly Curriculum (BFC) Audit to help teachers identify elements of classroom and school life that are deemed by boys to be conducive to their engagement in learning. Boys assessed activities against a number of criteria such as ‘freedom’ and ‘safety’. The results of the audit were used by teachers to inform curriculum design, classroom set-up, and approaches to teaching.

The West Wallsend/Hunter Cluster used the NSW Quality Teaching Model to focus the work of the school community on improving teaching practice and student learning outcomes. Teachers used the model as a tool to reflect on their practice and analyse their own teaching in terms of the improvement of student learning. Schools also used the model in discussions with parents and the community to evaluate teaching and learning at the school.

The Salisbury Cluster developed a Teaching Rubric to measure teacher attitudes and confidence in five areas of pedagogy. The tool can be used to audit the existing knowledge base, and provides direction for improving teacher’s literacy interventions for boys. The rubric was used to track teacher’s progress.

ENGAGEMENT, SUPPORT AND RELATIONSHIPS

The Kew Cluster implemented the You Can Do It Programme, which is widely used in Australian schools to help students, parents and teachers to develop attitudes and behavioural patterns to enhance children’s learning potential. The programme aims to help students reach their full social and academic potential by developing attitudes and values that are foundational for academic achievement, healthy relationships, and psychological well-being. The programme aims to support the eventual transition from school to further education, work and adult life.

The Adelaide North Cluster developed Programme Achieve as a core programme. The programme focuses on teaching students the five foundations (confidence, persistence, organisation, getting along and resilience) that constitute an able mindset for developing academic potential. Programme Achieve helps students to think rationally and to eliminate the negative mindset that is associated with anxiety/low self-esteem, work avoidance, general disorganisation, and rebelliousness and anger. The programme aims to change student's low self-esteem and anxiety into confidence, convert work avoidance into persistence, transform disorganisation into organisation, and turn-around student rebelliousness and anger.

The Palmerston Cluster Strong Boys Programme catered for boys at-risk. It used a series of innovative, hands-on learning tasks that were relevant to boys in the cluster to
encourage them to participate in their schooling. Activities included spear making, skateboarding lessons with a professional skateboarder, water safety and swimming coaching, life skills (cooking, hygiene, fitness, Karate), and participation in a dramatic performance night with scouting groups. The activities engaged otherwise disenfranchised students, and culminated with a school camp.

The Rock & Water Programme, originally developed in the Netherlands, was implemented by a number of clusters to provide teachers with an alternative way to interact with boys through physical and social skills teaching. Mental and social skills are built-up through physical exercises, and boundary and communication exercises, that strengthen self-confidence in a framework of self-defence. The programme assists boys to become aware of the role of purpose and motivation in their life, and aims to increase their self-confidence and compassion. It focuses on intuition, body language, mental strength, empathic feeling, positive thinking and visualization of intended outcomes. Strategies within the programme focus on topics such as bullying, sexual harassment, homophobia, life goals, desires, and ‘following an inner compass’.

WHOLE–SCHOOL AND COMMUNITY

Many clusters provided parents with very practical ways of supporting their sons’ development. Often, clusters drew up charters to monitor issues for boys and discussed these with parents — fathers, in particular. In others, the wider community was brought into the project through an increased awareness of vocational and recreational needs. For example, Karijini Cluster’s challenge nights involved parents in activities associated with their children’s learning — parents were given literacy kits to further develop the emphasis of individual (one-to-one) parental involvement with homework and general student progress across all subjects.

The Palmerston Cluster implemented the MindMatters programme using a whole-school approach to mental health promotion and suicide prevention. Social and emotional wellbeing have been linked to young people’s schooling outcomes, their social development, their capacity to contribute to the workforce and the community, and to reducing the rate of youth suicide. The programme aimed to enhance the development of school environments where young people feel safe, valued, engaged and purposeful.

The associated CommunityMatters programme focuses on strategies that develop holistic social and emotional well-being, and helps educators explore the interrelationships between community, identity and culture.

Together, the two programmes provide schools with planning tools and a framework for mapping and managing mental health issues, and a guide for school-based approaches to preventing self-harm and suicide.

The Community Partnership Initiative in the Flora Hill Cluster sought to establish strong relationships with local businesses and community groups to broaden school projects and the syllabus. The cluster developed a community expo involving over 25 organisations and 200 teachers to support the development of authentic projects and opportunities for boys.

Following a Dads and Lads night where literacy issues and possible solutions were discussed, the Karijini Cluster provided fathers with a reading list, sample readers, and a logbook to encourage guided reading sessions at home.

The Mirani Cluster extended their activity-based learning programmes by engaging directly with organisations outside of the school. They developed relationships with a local politician, who acted as a champion for the project, engaged with local business and service organisations and local industry. These external links were critical to the impact of
the project and also provide strong grounds for sustaining the project beyond the period of funding available under the BELS programme.

RELATIONSHIPS, MASCULINITIES, ROLE MODELS & MENTORING

Several clusters focused on addressing the affective domain of boys’ learning—issues concerned with boys’ relationships with their school, their peers, and their perceptions of themselves. Another area of focus was the disengagement of boys from their schooling. Clusters recognised the importance of boys’ social and emotional well-being as central to any project aimed at improving their academic outcomes.

Airds Cluster was concerned about the general lack of engagement of boys in their schools. Their approach focused on the self-esteem and re-engagement of boys in Years 5–11 in the learning process. Their Boys’ Own Project was a self-directed activity where boys were encouraged to work with male mentors in the school and in the community to pursue a hobby or interest. This was supported by a personal diary kept by each boy to stretch their capacity to learn from the lessons in the project to other areas. A series of workshops examined issues such as role models, violence, legal rights and responsibilities, and homophobia. Reward excursions, canyon expeditions, and a three-day Boys’ Own Camp for those who met targets along the way were provided. Year 10 and 11 students provided mentoring within the secondary school and for boys in the primary schools in the cluster.

The following outcomes were targeted for improvement:
- student attendance;
- suspension rates for boys (particularly for acts of violence);
- retention rates of boys;
- welfare and discipline referrals;
- self-esteem;
- attitudes to boys by staff and the community;
- boys’ understanding of masculinity issues;
- creative expression; and
- opportunities for male mentoring.

In order to meet these outcomes, workshops were held to extend the Boys Own Project developed previously by the Lighthouse School to partner schools. The cluster conducted a professional development programme for staff, developed a support network for staff, developed an electronic resource kit, implemented a mentoring programme for older boys in the cluster, and provided professional learning opportunities in Outdoor Education for staff. Boys were provided with an Induction and Planning day, followed by a series of student workshops on role modelling, setting goals, self-image, sexuality, homophobia, anti-violence strategies and anger management. Boys designed their own projects with assistance from project guidelines and mentors, presented their results at a public forum, with successful participants being rewarded with an outdoor activity.

The Eden Cluster developed a Male Mentoring Programme that involved ‘grand-dads’ and older-boy mentors to work collaboratively with younger boys to repair bicycles. The aim was for the participating boys to develop increased resilience, commitment to seeing through a task, an improved sense of self-worth and positive self-image, as evidenced and measured by improved behaviour, attendance, and more positive attitudes to school.
The **Melville Cluster** developed a *Role Models for Students Programme* that trained a group of Year 11 students as mentors to facilitate small group learning and provide individual attention for Year 8 boys. The aim was to develop relationships and provide effective, positive models of older male behaviour. A chaplain was employed for one day each week to co-ordinate the project. Similar strategies operated in many other clusters, including New Town and Karijini.

The **Goldfields Cluster** developed a *Community Mentoring Programme* using the services of a local builder who volunteered some time each week to work with the students on practical and technical aspects of building. The students were asked to present a variety of building tasks in order to expose them to many of the complex practical issues and regulations in the building trade (health and safety regulations, building codes). Students kept journals and recorded the progress of their learning in a video and PowerPoint presentation.

ICT (INFORMATION COMMUNICATIONS TECHNOLOGIES)

The **Knox North West Cluster** developed a group of *Online Classroom Corporations*. Twenty-three creative businesses were formed, serviced by an Online Cluster Corporation Bank developed by a team of Year 11 students. A total of 23 classes from Years 5–8 across the cluster were involved.

The project was used to energise and revitalise the curriculum, develop student’s inter-relationships, integrate ICT into the curriculum and make learning practical, relevant and enjoyable for boys.

A number of clusters used *Think.com*—an international online community for learning provided through the Oracle Education Foundation and available to all Australian schools free-of-charge. *Think.com* recognises that learning is a social phenomenon and provides protected and secure sites for sharing opinions and supports students to become multimedia authors in a global community by allowing students to think and learn together.

The **New Town Cluster** developed an ICT project in which primary school students learnt ‘mind mapping’ techniques and the programming of computer games.

THE MULTI-FACETED NATURE OF THE PROJECTS

The most common marriage of foci was between pedagogy and literacy, however, most projects sought to incorporate multi-dimensional strategies that involved additional elements such as mentoring, hands-on and physical activities, and powerful teaching strategies.

The **New Town Cluster** used a multi-dimensional approach with four major strands: literacy; mentoring/leadership; the Arts; and ICT. The strands are connected by a common approach to teaching and learning characterised by active, authentic, hands on experiences:

- [There have been]...tangible improvements...boys being successful learners as a result of...being engaged in real life learning...we witnessed the interchange between mentor and mentored creating powerful learning for both parties...boys mentoring other boys at school and in other schools, students mentoring teachers and teachers mentoring teachers...
- ...teachers collaborating on practical projects informed by best practice and research have been another feature of our project...we have seen teacher expertise, skill and commitment enriched as a result of working together in
practical and collaborative ways to achieve clearly defined educational outcomes.

The cluster appreciated the philosophical aim of BELS to find schools who were doing things well and to provide resources to allow them to share their practices and to achieve gains in educational outcomes as a result of collaborative work and a shared sense of achievement.

The **Youth Education Centres Cluster** involved several schools in juvenile detention centres nationally and sought to address under-achievement in academic and social outcomes for students in youth detention by increasing educators’ capacities to teach oral language.

The project had two primary goals. The first was to increase the competence of young people in detention to recognise and respond to the language differences between home and the community. The second was to foster a community of practice between teachers in detention centres around Australia, in order to improve knowledge about boys’ spoken language, possible teaching strategies, and teaching resources relevant to this population.

The cluster undertake an audit of best teaching strategies across the schools, conducted workshops based on the results of the audits, conducted a Spoken Language Skills conference, and developed a Spoken Language Skills Backpack/Toolbox. They then implemented the resulting strategies, using a pre and post-intervention survey, anecdotal evidence, and checklists to assess the impact of the strategies.

The **Adelaide North Cluster** focused on improving Years R–7 boys’ engagement with schooling. The project aimed at positively influencing levels of literacy, reducing at-risk behaviour, and enhancing social outcomes through implementation of a range of strategies that included *Programme Achieve*, *Move to Learn* and *Rock and Water*.

The project had three aims. It sought to enable boys to manage themselves and consider others, to the extent that a reduction in behavioural incidents, a decrease in the use of time-out rooms, and positive evidence from teachers about boys’ behaviour in class and in the school grounds was achieved. It aimed to improve at-risk boys’ literacy levels when judged against ongoing benchmark testing, BURT tests of reading abilities, and informal qualitative evaluation by teachers.

Finally, it sought to build a more positive learning community for students and teachers, ongoing professional development programmes and pedagogy refinement, and observable changes in school processes that reflected an awareness of the specific needs of boys.

The method used to achieve this was the establishment of a boys’ education community of practice within the cluster—one that provided a programme of professional development to facilitate teachers’ own learning about boys and inform their planning and pedagogy. *Programme Achieve* and a *Learning Centre* strategy were implemented, and ongoing sharing through Key Teacher Regional Meetings supported these initiatives. In addition, a *Rock and Water* programme focused on boys’ behaviour, and a *Move to Learn* strategy focused on boys’ social learning.

Regional disadvantage was an underlying concern that influenced the nature and operation of several rural and remote cluster projects. Not only does isolation disadvantage boys’ learning in terms of their future employment opportunities, it also reduces access to resources, and is associated with high turnover of teaching staff. Intra-cluster geographical isolation—where many hundreds of kilometres separated partner schools—created the need for particular strategic decisions to be made in the planning phase.

Isolated clusters developed projects that drew heavily on support from external organisations such as the Army, Rotary, Indigenous organisations, sporting clubs and other support groups. Their BELS projects included a high number of strategies that linked to
local community life. They were selective in their use of high-cost specialists, instead
tending to utilise programmes that already existed in the community and adapting their
BELS project to build-on these successful programmes, rather than vice versa.

Karijini Cluster, situated in the remote Pilbara Region of Western Australia, was aware
that literacy and related verbal reasoning skills are the most important influences on boys' cognitive, affective and behavioural development. Because the Pilbara region has a very high turn-over of teaching staff, most of whom had less than 4 years of experience, the Cluster focused on pedagogical strategies that would enhance the effectiveness of early-career teachers, particularly in relation to literacy for boys in years K–12.

Their project was ambitious, having four broad aims to:

- build school capacity to achieve a measurable improvement in literacy achievement for a targeted group of boys;
- develop teaching strategies to accommodate the differences between students to achieve marked improvement in attendance and improved academic performance of at-risk boys in specialist programmes;
- improve verbal reasoning and written communication skills of boys; and
- develop the capacity of schools and teachers to disaggregate and analyse standardised testing data and other benchmarked data appropriate to analysing current performance and setting future goals and standards for student literacy programmes.

A wide range of strategies were employed in addressing these objectives:

- work shadowing and classroom observation methods to model good teaching practice;
- ongoing professional development with the aim of achieving an effective community of practice amongst the cluster’s far-flung schools;
- involving the community and parents with teachers in professional development programmes;
- a primary-to-secondary transition programme, with a focus on boys at-risk;
- a management information system to track each student’s progress;
- an inclusive learning programme for at-risk students, including *First Steps* and *Stepping Out*; and
- Indigenous education programmes that focused on retention, attendance and academic performance of Indigenous boys.

DISCUSSION

BELS cluster projects had a strong emphasis on literacy and pedagogy, student engagement, role models, relationships and improvement of boys’ self-esteem and confidence. There was a dearth of pre-established programmes for schools to access and many clusters had difficulty in locating consultants with specialist knowledge of boys’ education issues.

Most clusters developed multi-faceted projects that paid close attention to the local context and regional factors that impacted on their access to resources. Clusters in isolated communities, in particular, were very selective in the use of specialists and highly dependent on strong leadership.

The model of the ‘Ten Guiding Principles for Boys’ Education developed in the precursor project to BELS was rarely accessed or used by clusters—most clusters focused on the development of a project based on the needs of boys in their schools, as identified through a range of data associated with learning outcomes and engagement.
CHAPTER 5

EDUCATIONAL OUTCOMES

This chapter provides an assessment of the impact of cluster projects implemented during the BELS programme. It does so by first providing an overall assessment of the cluster projects, followed by examples of cluster outcomes.

The project’s design encouraged grass roots, teacher-as-expert attention to boys’ educational problems in the context of the schools involved in each cluster. This resulted in a wide variety of approaches and a diverse array of strategies to improve the educational outcomes of boys.

Individual clusters specified their baseline and success measures as part of their YCP reporting process. While some common tools were used, clusters mostly developed their own surveys and modified existing measurement instruments to evaluate their project. In a small number of instances, clusters brought in external consultancy support to evaluate their project. Cluster consultants provided through the BELS network provided support for data analysis and critical feedback on reports. However, it is evident from the evaluation evidence on cluster consultant input that they did not always provide the assistance that was anticipated, and this shortfall had a significant impact in some clusters during the final analysis and reporting stages.

In spite of a concerted focus by most cluster consultants and the NPMT from the early phases of the project, some clusters struggled to convincingly assess the impact of their projects. Generally, this was characterised in final YCP4 reports by an over-reliance on anecdotal evidence from teachers and the absence of relevant data to evaluate the impact of the project. While teachers’ perceptions of the success or otherwise of a strategy was critical, clusters with a weak evaluation tended to support their findings with subjective comments rather than empirical data. The best evaluations combined these two elements of assessment, adding strong and compelling observations of what actually occurred in the classroom to a foundation of factual data.

ASSESSMENT OF IMPACT

The 2005 YCP4 reports that had been received by the due date were assessed independently by two reviewers and the results moderated through discussion - some projects were granted extensions and others were late in submitting their reports. The assessments were on a 16 point scale for: evidence for an effect; causation linking strategies to outcomes; teacher perceptions of impact; and an overall assessment of the impact of the project (Figure 9).
The broad results were as follows:

- the raw scores for the attribution of a causal link between the strategies and outcomes were generally lower than the other measures. Two-thirds of the scores about evidence of causation were in the High or Very High category. That is, the final reports did not provide any clear link between the strategies implemented and any observed impact on outcomes for one-third of the projects;

- three-quarters of the final reports were assessed as providing ‘reasonably convincing factual evidence’ of an impact, positive or negative; and

- teacher perception evidence in the reports indicated that 100% of the projects ‘had a positive impact on boys’ learning outcomes’. Consistently, teacher perceptions of the impact of projects was scored higher than scores on the other measures.
The overall assessment (Figure 10, *Overall Impact*) ‘based on all the evidence’ available was that 63% of the projects were rated as ‘High’ or ‘Very High’ in terms of their capacity to demonstrate a positive impact of the project on boys’ learning outcomes. A further 30% of projects were given a ‘Medium’ rating and 7% a ‘Low’ rating. These latter two groups of projects can be considered to have had minimal or no impact on boys’ learning, in terms of the evidence available in the reports.

Figure 10: Assessment of Evidence of Impact in Cluster Reports

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Score Range</th>
<th>Evidence of an Effect</th>
<th>Evidence for a Causal Linkage</th>
<th>Teacher Perceptions of Impact</th>
<th>Overall Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1–6</td>
<td>4 (%)</td>
<td>11 (%)</td>
<td>0 (%)</td>
<td>7 (%)</td>
</tr>
<tr>
<td>Medium</td>
<td>7–10</td>
<td>22 (%)</td>
<td>26 (%)</td>
<td>0 (%)</td>
<td>30 (%)</td>
</tr>
<tr>
<td>High</td>
<td>11–13</td>
<td>44 (%)</td>
<td>33 (%)</td>
<td>56 (%)</td>
<td>33 (%)</td>
</tr>
<tr>
<td>Very High</td>
<td>14–16</td>
<td>30 (%)</td>
<td>30 (%)</td>
<td>44 (%)</td>
<td>30 (%)</td>
</tr>
</tbody>
</table>

Overall, there is only moderate correlation between the four scores (Figure 11) — the correlations are in the range 0.4–0.7. A small number of the reports had significant inconsistency among their scores, but several had high consistency. The latter set of clusters demonstrated a high capacity to adequately assess the impact of strategies, and to report accurately on their projects.

Figure 11: Correlation Matrix for Four Measures of Impact

<table>
<thead>
<tr>
<th>Evidence for an Effect</th>
<th>Causation Linking Strategies to Outcomes</th>
<th>Teacher Perceptions of Impact</th>
<th>Overall assessment of Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
<td>1.0</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Cause</td>
<td></td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Perception</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Impact</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT OF IMPACT FOR INDIVIDUAL CLUSTERS

The impact of cluster projects as reported by schools provide detail that can be used to enrich the overall assessments provided above. A selection of individual clusters provides a snapshot of the impact of specific projects. Detailed case studies follow in Chapter 7.
Packenham (Vic): Improving Boys’ Literacy in ICT

This project focused on improving the level of outcomes in writing and aimed to enhance boys’ attitudes to school with instructional methods that emulated modelling, coaching and scaffolding concepts integral to instructional apprenticeship.

Focus group: Boys in Years 3–9.

Focus outcomes: The cluster had four goals: (1) improve teaching of writing; (2) improve writing outcomes for boys, particularly through the use of ICT; (3) improve relationships between boys; and (4) improve teacher knowledge and skills about developing relationships with boys.

The nine schools in the cluster identified project foci and appointed a project coordinator. The cluster identified key teachers as school-based BELS coordinators. A cluster consultant and critical friend was appointed, in addition to a BELS university-affiliated consultant. A cluster-wide curriculum day and a series of principal and coordinators conferences to assess progress in the project were used to link the school community and to plan for project sustainability. Cluster-wide PD was implemented in key areas such as student and teacher strategies to engage boys in learning. The cluster developed a range of projects to improve outcomes for boys; ICT enhanced literacy approaches for boys’ learning, single–sex classes, focused on boys in isolation, a Buddy Learning System was employed for ICT development, a major literacy focus was established, mentoring programmes were used to develop relationships, hands-on classes in woodwork were established, cross-age tutoring, relationship-building days with fathers were run, and male role modelling with a children’s author was implemented.

The cluster collected baseline data to track students outcomes, conducted a survey of teacher development, surveyed student ‘connectedness’ and ‘attitudes to school’, undertook a ‘boy-friendly curriculum’ audit, and assembled data from external student assessments in literacy.

Writing outcomes improved for boys and girls. Survey data showed some improvement in boys’ attitudes to school and in their relationships with teachers. Reflections and comments by teachers supported a belief that learning and teaching outcomes improved: teachers noted they where more confident following PD activities, and that they had a greater clarity of direction, they did more modelling, and provided more explicit teaching to boys. In addition, they noted that they had a supportive teaching team that worked well together, and had a greater understanding of boys’ learning. The project resulted in modelling of different genres of teaching, increased levels of scaffolding, and increased use of templates and graphic organisers. More structure was built into writing lessons, and there was more ‘explicit teaching’ for boys.

West Wallsend/Hunter (NSW) Quality Teaching Programme to Improve Outcomes for Boys.

This project aimed to improve the learning outcomes of targeted at-risk boys in literacy, by enhancing educators’ skills to teach boys.

Focus Group: Grade 3, 4 and 9 boys, low achieving boys, boys with behaviour or learning difficulties.

Focus Outcomes: The NSW Quality Teaching model was used to: (1) increase the engagement of boys in their learning through being better able to see the significance and intellectual quality of their schoolwork; (2) improve teacher understanding of quality
teaching and increase expectations of what students could achieve; (3) improve the quality of student schoolwork; (4) develop improved continuity of literacy learning from primary to secondary school, with a reduction in the regression of learning for boys at transition to secondary school; (5) improve retention of students; and (6) develop a sustainable professional learning community for K–12 teachers aimed at improving knowledge of teaching, learning and assessment.

Baseline Data: Recording teacher and student reflections, behavioural referral data, coding student work samples, and tracking of student academic results.

Measurement Tools: Quality Teaching Rubric, ELLA, TORCH, Basic Skills Test (BST), Primary Written Assessment (PWA).

Project Results: Tracking of target students across the cluster showed definitive improvements in results for boys overall—more so in Mathematics than English. Work samples revealed a 75% increase in understanding of concepts taught for the target group of boys. A 30% improvement in student attitudes was also evident—particularly in terms of boys increased belief that school was ‘an interesting place to be’. Over the whole cluster, all boys showed improvement in narrative. Commendations to boys were up 37% across the cluster. Many anecdotal comments from teachers were provided that supported the belief that boys’ were more engaged, and improved in literacy and behaviour:

> All boys are more engaged, albeit to varying degrees and are more willing to accept responsibility for their own learning. Although periodically, disruptive behaviours still occur, it is much less frequent and much less intense than in 2004. There has been a real improvement in reading, especially for the lower achieving students. With improved reading results has come increased confidence, a willingness to attempt new material and a better attitude in terms of working independently. (West Wallsend/Hunter Cluster YCP4 2005)

Sydenham/Delahey Cluster (VIC): Circles of Improvement

A Literature Circles strategy was implemented to improve boys’ engagement with reading, social competencies and communication.

Focus Group: Boys from selected Year 4 and Year 8 classes.

Focus Outcomes: This project had three aims: (1) use literacy strategies to improve targeted boys’ engagement in schooling, as evidenced by a measurable improvement in attendance pre- and post-project, improve attitudes to reading as measured by an attitudinal survey, and improve confidence of staff in the use of literacy strategies to engage boys; (2) improve reading skills as evidenced by measurable improvements in pre- and post-project PROBE testing; and (3) improve boys’ social competencies, as evidenced by student and staff surveys of social communication, organisation, and self-management skills for targeted boys.

Baseline Data & Measurement Tools: Attendance records, a student attitudinal survey, boys’ self-perception survey, teacher learning assessments, PROBE, state-wide testing data and TORCH assessment data.

Project Results: Literacy Circles gave students the opportunity to choose their own books, hence, a sense of ownership of their learning—“Can we do this next year, but with more time”—and it also gave them variety in their learning approaches, which students noted as significant. Major improvements in PROBE test results occurred across the cluster, when analysed pre-project to post-project. Nearly every student improved their results for both fiction and non-fiction assessments, both girls (76.2%) and boys (74.2%). An improvement in reading-age achievement of up to 1-year was apparent for 74% of boys and 76% of girls. General reading PROBE data also showed across the board gains — 41 of 48 boys greatly
improved in their reading abilities and comprehension. State-wide test data showed
dramatic improvement in the mean reading age — 50% of boys improved a full year in their
reading age results.

Palmerston Central (NT): Boys to Men

This cluster of schools endeavoured to improve the educational experiences of boys
through the introduction of positive male role models from the community into the cluster’s
educational institutions. The aim was for students to develop positive relationships with
significant males, and in the process, improve the literacy outcomes of boys, and establish
a successful mentoring programme.

Focus Group: Boys Years 3–9.

Focus Outcomes: An improvement in attendance for boys; an increase in student self-
esteeem and teacher perceptions of student connectedness; a reduction in the incidence of
poor behaviour by boys; an increase in the number of boys achieving benchmark ratings in
the Multi-Level Assessment Programme (MAP) in each school in Year 3 and Year 5.

Key Strategies: Role models assisted in offering moral, behavioural and attitudinal
guidance. Class tutoring was implemented as explicit teaching to enhance literacy
attainment. Regular inter-school activities and meetings involving ‘Lighthouse Boys’ to build
inter-community strength, as well as activities designed to promote connectedness
between the target boys, their peers, their classroom, their school and their wider
community. Professional learning for teachers and other school support staff was used to
identify and implement strategies that work specifically with boys, such as the Mind Matters
and Stepping Out programmes.

Baseline Data & Measurement Tools: Attendance data, MAP achievement data, student
Attitude to School survey, school-based behaviour management data, reflective journals.

Project Results: In the comprehension test, between May and November 2005, 6 of 9
targeted students showed an improvement of one Stanine ranking, with 3 improving by
more than one Stanine ranking. In reading vocabulary, 2 students declined by 1 Stanine
ranking, 4 made an improvement of one Stanine ranking, and 2 students improved 3
Stanine rankings. Students indicated they liked smaller class sizes, being helped by the
teacher, and setting goals. They were interested in leadership and proud of their change in
behaviour and in literacy and leadership skills. The *Attitude to School Survey* found that
students thought the projects were interesting, which impacted on their work and
influenced improvement through the year. Their general feeling about schooling was
positive, and there was a 23% reduction in unexplained absences. Overall, the behaviour
data on detentions was unclear, but it indicated a decrease of up to 60% for some boys.
Suspensions were reduced by 60% for boys.

Collector (NSW): Boys From the Bush: Stepping Into the Spotlight

Focus Group: Grades 2–6.

Focus Outcomes: This project aimed to: (1) enable boys to perform confidently in music
and dance activities, and in speaking situations; (2) engage boys in developing the project
and communicating it to the community using a range of ICT and other communication
skills; (3) enable teachers to gain greater understanding of contemporary issues
concerning the education of boys and disseminate this knowledge to the wider school
community; and (4) encourage the school community to develop a culture of recognising
the need for strategies to support boys' educational outcomes and, in the process,
recognising the value of the performing arts for boys' development.
Key Strategies: Strategies sought to gain an improvement in boys’ communication and performance skills through workshops about performance, participation in a drama production, public presentation to the school community on aspects of the project, and the use of ICT skills (PowerPoint, Think.com, web page construction) to develop and publicise the project. Teachers’ knowledge of boys’ educational issues and subsequent adoption of good teaching practices for boys were addressed through professional development sessions and the development of boys’ education school plans.

Baseline Data & Measurement Tools: School Map survey, Quality of School Life Survey, Basic Skills Test data, Computer Skills Awareness Test data.

Project Results: Up to 40 % of students increased their score on specific items in the School Map Survey post-project compared to pre-project. The Quality of School Life survey also indicated marked improvement in scores post-project. The number of boys involved in public speaking increased as the project developed. Survey results from Camp Creativity indicated improved student engagement had been achieved via a hands-on arts based pedagogy.

South Eastern MAP Cluster: Motivation, Achievement & Participation of Boys in Literacy

Focus Group: Boys in Years 4–10.

Focus Outcomes: The project had three aims. The first was to improve boys’ motivation, achievement and participation in reading by increasing the frequency of reading, attitudes to reading, and reading skills. Second, it sought to improve boys’ motivation, achievement and participation in writing, as evidenced by an increase in external assessment programmes and school-based literacy test results, and improve the quality of outcomes in boys’ class writing tasks. Finally, it sought to improve teachers’ pedagogy to address boys’ literacy issues, to achieve improvement in boys’ engagement in schooling as evidenced through a reduction in suspensions, and surveys of teachers’ competence and confidence in implementing boys’ strategies.

Key Strategies: The method of achieving these aims was to implement strategies specific to each school to address the needs and situations of particular boys. The strategies included swap clubs, the use of ICT, a range of group work, and assisting teachers to implement cross-curricular tasks. An overarching plan linked individual school projects across the cluster through: writing strategies that addressed planning, purpose, audience, form, conventions, expression, organisation, and reflection; reading strategies that addressed ‘coolness’ of reading, relevancy of reading to boys’ interests, sharing reading as a motivational tool, sharing knowledge as an ‘expert’ through book swap clubs, and mentor reading; and professional development strategies that addressed the development of pedagogy to meet boys’ preferred learning styles.

Baseline Data & Measurement Tools: Pre-and post-testing using surveys of engagement for students, teachers and parents; data on the frequency of boys’ reading, their attitudes to reading and their reading skills, teacher and external assessment data on boys’ achievement; teacher surveys of perceived competence and confidence; and rubric-based assessments of teaching practice.

Project Results: There was a small increase of 11% of boys who ‘looked forward’ to classes that involved group-work, and of 13% who enjoyed working in groups; the impact on overall learning outcomes was ambiguous, but there was a direct positive impact on literacy outcomes; there was a substantial improvement in retention and a large reduction in reported discipline problems; boys’ reported that they preferred to use a computer to prepare their essays, compared to writing by-hand; and teachers reported that professional
learning through a ‘community of practice’ was more effective than traditional professional development programmes.

An analysis of the final YCP4 cluster reports indicates that about two-thirds of the clusters were successful in developing and implementing strategies that had a positive impact on learning outcomes for boys. Teacher ratings, however, were consistently higher than this, suggesting that they were either drawing on additional evidence not available in the YCP Reports, or that they were interpreting the result of their projects through rose tinted glasses. The YCP reporting framework was successful in that it provided the evidence required to assess that there was clear evidence for a link between the strategies implemented and the impact on student outcomes in about 60% of the clusters, and that there was some evidence of a link in a further 26% of clusters. Further, the reports provided evidence to assess the impact-positive or negative-of the strategies in over 90% of the clusters. However, although clusters indicated that they were planning to use a wide range of baseline and success data, the reports typically contained data for only a subset of the planned data available for analysis.

Projects that focused on literacy consistently reported improvement in literacy skills by boys targeted for BELS strategies. While the methods used to measure these outcomes varied considerably, and the amount of improvement varied from ‘slight’ to ‘extensive’, it would be fair to conclude that, in general terms, the evidence indicates that BELS clusters were successful in helping teachers target boys in need of assistance, and to develop and implement more effective literacy strategies. Most of the strategies implemented to improve literacy were not new innovations, which makes it easier to apply them more widely in schools.

There was a substantial impact on the behaviour of boys in many cluster projects, with the incidence of unacceptable behaviour decreasing. There was also a substantial reduction in the application of sanctions for the worst transgressions of school ‘rules’ - time-outs and suspensions were substantially reduced in cluster projects.

The engagement of boys’ improved as a result of the strategies implemented in many clusters, as evidenced by improvement in attendance, and measures of student interest and motivation.

Teacher learning was a key focus in many clusters. There was consistent evidence of teacher learning through the implementation of BELS strategies, including increased awareness of boys’ issues, improved confidence in teaching boys, and an improvement in professional knowledge.

Clusters reported that a significant outcome of the BELS project was the development of sustainable relationships with schools in their local area. The shared experience of BELS allowed many teachers to form professional links that bridged primary-secondary, or private-public differences.
CHAPTER 6

CASE STUDIES

This chapter provides a series of brief case studies of clusters whose projects offered significant knowledge about strategies and insight for improving learning outcomes for boys. These case studies are drawn from the clusters that had submitted their final report by the due date - clusters that submitted their reports late or were granted an extension for the completion of their project were not considered in preparing this chapter.

BAYSIDE/THORNLANDS CLUSTER

Project Background

The Bayside Thornlands cluster is located in the Redland Shire situated around picturesque Moreton Bay in Queensland. It consisted of five co-educational government schools—four primary (Thornlands State Primary, Thornlands Preschool, Macleay Island, and Russell Island) and one High School (Cleveland District State High School). The cluster’s project, Rocking with Reading and Writing, evolved out of a concern in the cluster for boys' lower performance than girls in the Queensland state-wide literacy testing programme. Though the performance of boys varied across schools in the cluster, it was below State average and below the schools’ average in reading and writing. In addition, student engagement was identified as a key feature affecting performance in literacy. School records revealed that boys represented over 95% of all suspensions, referrals and time outs. The highest suspension rate in a cluster school was 7%. The rate of classroom disengagement was 13% for boys and 3% for girls. Furthermore, 80% of the teachers reported that boys more often failed to complete learning tasks, homework and projects. Of concern also was the ratio of 2 to 1 of girls to boys applying for leadership positions and participating in school activities.

The Project

In response to these concerns, the cluster developed three programmes to assist teachers and students achieve an improvement in literacy performance. First, a personal development programme for teachers targeted leadership, teamwork, goal setting, social interaction and self control. The first stage of the programme was to revisit the issues, statistics and information about boys in each school. The cluster also organized a workshop for teachers on Seven Steps to Writing Success.

Second, a buddy reader mentoring programme (Fine Young Men Programme) was implemented to train Year 6 and 7 boys to mentor preschoolers and Years 1 and 2 in reading and writing. Year 8 students at the High School mentored Year 5 students in reading at the primary schools. Recognition was provided for achievement as the training was completed by each boy. The mentoring programmes were then implemented at each site.

Third, the cluster developed a Toolkit of Strategies for Improving the Literacy Performance of Boys, with a focus on reading and writing. Staff collaborated across schools to develop the toolkit. The process included: a review of student data; an assessment of literacy resources available in the schools; a review of reading materials available for students; and a review of individual teaching programmes. The Toolkit was used to support teaching in the SPARKS Continual Improvement of Writing Programme implemented at Thornlands.
Boys' Education Lighthouse Schools Stage Two Final Report 2006

Primary (Years 5–7). Best Practice Behaviour Management Strategies to improve the engagement of boys in the teaching/learning process were outlined in the Toolkit.

Finally, the cluster developed a social skills programme and a student leadership programme.

Impact on Boys

There was an increase in boys' self-esteem and engagement with school and learning which the cluster attributed mainly to the social skills programme and the SPARKS Continual Improvement of Writing programme.

In the mentoring programme, the use of boys at three of the school sites as Buddy Readers/Support-a-Reader Leaders indicated a range of benefits, including:

- an increase in caring by older boys for younger boys;
- an increase in enjoyment of reading by both groups of boys;
- a noticeable improvement in the concentration span of the younger boys; and
- an improvement in the use of reading strategies by both groups of boys.

At one of the schools, reading mentors worked with Year 2 struggling readers on a daily basis to help them with their reading. In 2002 and 2004, before the programme commenced, the state-wide NET tests had identified that 33% and 25%, respectively, of students at the school required additional literacy support, compared to 25% state-wide in both years. Following the introduction of the mentoring programme, the NET test in 2005 indicated that 17% of students at the school required additional literacy support, compared to 25% state-wide:

The commitment of the boys to the mentoring programme was unexpected. The once-a-week initial commitment turned into half the boys attending the programme three or four times a week. The success and publicity of the boys' mentoring programme also resulted in a similar programme being developed for girls. (Cluster YCP4 Report, 2005)

The **CATS Social Skills Programme** was implemented regularly by over 90% of staff; the content was found to address relevant social issues by over 90% of staff; and over 90% of students participated in and indicated that they enjoyed the programme. In terms of measurable improvements of boys' engagement in school programmes, there was:

- a 50% reduction in suspensions in 2005;
- an equal number of boys and girls applying for school captain positions in 2006;
- an increase in the numbers of boys applying for and taking on leadership roles in programmes such as Peacekeepers, Big Buddies and Student Council in 2006;
- strong representation of boys in the graduating group of 2005 receiving awards for Academic Performance, Citizenship and All Round Performance; and
- an equal representation of boys and girls in 2006 Australia Day Ceremony performances.

The **SPARKS Continual Improvement of Writing Programme** undertaken by Thornlands Primary School in 2004-2005 produced a substantial improvement for boys in Year 7, as measured by the Queensland State-wide Testing Programme (see Figure 12).
The school’s Year 7 mean for boys was 18 points below the state-wide mean in 2003 and 3 points above in 2004, the year in which the SPARKS programme was being trialled. The impact of the programme is clear in the 2005 results for the school — the Year 7 average for boys in the Writing assessment had improve to 60 points above the state-wide average for boys — which was the same as the Queensland average for girls. Girls at the school, however, had increased their mean score to 57 points above the mean for girls state-wide. Twenty-one students (8 of them boys) scored at the possible maximum level of 900 points. This was the best Year 7 result that the school had ever achieved.

The following snippet of Year 7 writing illustrates the high standard of achievement reached by some boys.

...[she] had a bushy, black moustache on her upper lip and her mouth was as sour as a green gooseberry dunked in lemon juice. She never smiled...Under her thumb-like chin was a hideous, hairy wart bigger than the one on her nose. Her earrings looked if they had just came out of a time machine from the 1860's. Her eyes were as baggy as a sack of potatoes and her eyebrows were even bushier. The hair on her head was a monstrous mop of gross gray streaks that looked like a ball of yarn that a cat had played with, rather than hair...She had a long slithery neck that joined to her body.

WHAT THE PROJECT TEAM LEARNT

The implementation of the project was both exciting and challenging for teachers. The teachers reported they enjoyed the excitement of working with other teachers, encouraging boys to fulfil their leadership potential; there was a substantial increase in positive responses from parents; and the school won awards at the state-wide Schools Showcase and in National Literacy and Numeracy Week. They also valued access to quality professional development to meet local needs. The changes in teaching and learning are summed-up in the following comment from a teacher:

I have found that the children have a better understanding of how to write in different genres as opposed to the Year Seven children that I had last year. The reluctant writers are still getting some ideas down as opposed to last year where several children would just sit there and refuse to write. Doing lots of short writing tasks has enabled all children to have success in writing as they get to produce something and then they can readily share this within the class....Being made to submit written work weekly has forced children (and teachers!) to be more accountable — this is a good thing! (Cluster YCP4, 2005)
Teachers found frequent key staff transfers taxing and underestimated the time involved in developing and implementing the programme alongside existing duties. They also found the achievement of consistent application of the strategies very challenging.

Interest in trialling new strategies was widespread across the cluster. Teacher comments indicate that the strategies developed and implemented through involvement in the BELS project, especially the Toolkit and the Seven Steps to Writing Success, resulted in both boys and girls being motivated to write. Strategies which proved popular in the implementation of the writing sessions included greater attention to oral language experiences as part of the writing process; brainstorming ideas for character and story outlines; building tension in the story; and structuring effective conclusions.

The strategies implemented by the cluster schools have made a significant contribution to the evidence-base of teaching practices that have been shown to work. In conceptualising an approach to boys’ literacy learning, these projects focused on a range of practices for representing the self, for relating to others, and for engaging with cultures (Alloway, Freebody, Gilbert, & Muspratt, 2002). The cluster’s decision to broaden the repertoire of practices was essential to the successful achievement of the project goals.

As expressed by one of the teachers in the final report:

> what is now needed is a continual process of feedback, reflection and sharing as to what works well and what doesn’t. (Cluster YCP4, 2005)

MILDURA CLUSTER

Project Background

The Mildura BELS cluster comprised 10 schools within the Sunraysia area of north-west Victoria: Chaffey Secondary College; Irymple Secondary College; Merbein Secondary College; Redcliffs Secondary College; and Robinvale Secondary College along with Mildura West, Mildura South, Nichols Point, Irymple and Merbein Primary Schools. Many students are from migrant families who depend on seasonal work on the farms in the area. Consequently, there are a high number of students from non-English speaking and generally low-socio-economic backgrounds. There were a significant number of students from Koori or Polynesian backgrounds across the cluster. Several of the schools had concerns about student attendance, but this varied greatly between schools. Analysis of literacy data from state-wide assessment tests and teacher assessments found that Middle Years literacy levels for boys were up to 12 months behind those for the girls, and below the state benchmarks. Teachers also expressed concern that boys were not engaging productively in their literacy learning.

The Project

The cluster’s project goals were to:

- improve the demonstrated skill levels of boys in literacy tasks; and
- improve teacher competence and confidence in teaching literacy.

The targeted boys were those underachieving in Years 5–9. Data were collected from approximately 290 boys across the ten cluster schools. About 26 teachers were involved in an on-going way. Although there were some variations in specific projects undertaken by schools, all projects emphasized the development of boys’ literacy skills and had either a reading or a writing focus. A key feature across all projects was the explicit teaching of skills in mini-lessons in a whole-class session. In addition, students were introduced to strategies that scaffolded their learning, including discussion roles in literature circles,
assessment rubrics and planning templates for writing. The project title, ‘Active Literacy’, indicates the emphasis on students as active participants in negotiating texts, engaging in hands-on strategies for learning and as key contributors in assessment processes. Literature Circles (Harvey 2002; Harvey & Steineke 2004) and Supporting Writers for Authentic Purposes (SWAP) (Bergeron & Rudenga 1996; Komoroff & Morrison 2001) were the key strategies implemented.

The project set targets for at least 50% of boys to have a WRAP (Writing Assessment Programme) score of 14 (adapted), or above, in the schools where writing was targeted, and 50% of students to have a TORCH score at or above the expected year-level in the schools where reading was the project focus. The project aimed for 100% of teachers to be more confident and competent to teach literacy across the curriculum.

Impact on Boys

Most boys made gains through their participation in the project, but the focus group of underachieving boys made no greater or lesser progress than other boys (Cluster YCP4, 2005).

Analysis of the teacher assessments against the Curriculum & Standards Framework (CSF) for reading outcomes for boys in Years 4–6 showed that at the end of the project more than 50% of the boys were at Level 4 ‘consolidating’, or Level 5 – above the expected level. This was a marked improvement, given that at the project’s outset, the majority of boys in Years 4–6 were assessed at Level 3 ‘established’ and Level 4 ‘beginning’. [One CSF Level equates to two-years of learning.]

Analysis of the teacher assessments against the CSF writing outcomes showed similar results. Although there were still a considerable number of boys operating below the expected level, more than 50% of the boys were at Level 4 ‘consolidating’ and Level 5, whereas no boys had previously exceeded Level 4 ‘consolidating’.

In Years 7–9, the number of boys achieving below Level 5 in reading was significantly reduced, with nearly all boys achieving at Level 5 ‘beginning’ by the completion of the project, and more than double the number of students were achieving at Level 6 ‘beginning’. Writing scores also showed a reduction in the number of boys achieving below Level 5 and an increase of students achieving at Level 6 ‘consolidating’.

Schools with a reading focus also assessed students on the TORCH comprehension test. Students needed to improve their score by approximately five points over the year to progress at the expected rate. Results showed that:

56% of boys exceeded the target, and 74% of boys achieved at or above expected change rates (Cluster YCP4, 2005)

Chaffey Secondary College found that while several students started the project with TORCH scores well below the expected levels for Year 7 and 8, all Year 8 students, and all but one Year 7 student, achieved scores above the expected level. Yet, as some teachers remarked, what the TORCH test did not measure was the positive attitude and real engagement demonstrated by boys:

“Student reflections were monitored by class teachers. These indicated a much stronger use of positive language when referring to literacy tasks” (Cluster YCP4, 2005)

Professional conversations, teacher and student reflective journals revealed improvement in students’ abilities to: challenge each other; ask “thoughtful questions; make judgments about the text/world and support opinions; and plan and organize learning” (Cluster YCP4, 2005). A further impact of the Literature Circles strategy reported by one teacher was a
fivelfold increase in the number of books read by boys when compared with the boys in the comparison group.

In the WRAP sub-group, many of the boys improved at least one point, which is a positive achievement, and the percentage of boys achieving a level of competency with a score of 14 increased from 39% to 45%.

What the Project Team Learnt

The rubric developed to measure teachers’ confidence and competence in teaching literacy revealed they had improved in all targeted categories. At the start of the project, 7 of the 23 respondents allocated a score of 4 on a 1–5 scale for their understanding of literacy strategies, whereas all 23 assessed themselves as 4 or 5 by the end of the project. Similarly, there were only 5 teachers who initially scored their confidence at 4, but by the end of the project 20 teachers assessed themselves at a score of 4 or 5.

In YCP4 (2005), teachers indicated that their knowledge of data collection procedures and processes had developed considerably through their involvement with the project. They stated the need to be explicit about the data to be collected and about the need to create collection criteria and proformas to ensure consistency within and across schools. The importance of using a moderation process to ensure consistency of judgments was also identified. Furthermore, a number of teachers recognized they now had an improved understanding of assessment as a diagnostic process. The report stated that:

> with a more formal emphasis on collecting evidence, both measurable and anecdotal, many teachers made significant comments on the value of reflecting on their practice and the literacy behaviours of their students. [Teachers] indicated that they had developed a new awareness of the literacy needs of students that were not obvious before. (Cluster YCP4 2005)

While the team noted that the variation in projects from school-to-school was not helpful, because it spread the staff too thinly and did not allow for cost-effective sharing of professional development across the cluster, the project was acknowledged as giving schools a narrowed focus. “Teamwork was identified by all schools as a critical outcome of the project. Support from colleagues and shared professional development were invaluable” (Cluster YCP4, 2005). Strong leadership was regarded as essential in supporting teachers to move forward.

As with all projects, there were many challenges for the Mildura Cluster: its geographic isolation; staff changes within its school; chronic student absenteeism resulting in gaps in the data; financial constraints on releasing teachers; and demands on teachers’ time for the administrative tasks associated with the project. “Anecdotal comments, reflective journals and email feedback all included very positive comments about the value of the PD sessions, the progress of the project and most importantly, [the improvement in] student outcomes” (Cluster YCP4, 2005). The professional development sessions and interactions with peers through involvement in the project were deemed invaluable. While the range of measuring tools and the subjectiveness of judgments with regard to CSF student assessments have meant that the results cannot be considered as definitive, there are strong indications that the two key strategies selected—*Literature Circles* and *SWAP*—had a positive impact on the literacy achievements of the boys in the cluster. Anecdotally, teachers reported that students now wanted to come to literacy classes, were more engaged, were more skilful in responding to texts critically in both reading and writing contexts, and were using self-assessment as an integral part of their learning. As one teacher noted, the project impacted very positively on teacher-student relationships.
BEACHSIDE CLUSTER

Project Background

The Beachside cluster comprised the Lighthouse School (a P-12 independent school), three government primary schools, and one independent school’s primary campus. Cluster schools are situated in the eastern Bayside suburbs of Melbourne and in reasonably close proximity to one another. The percentage of students from linguistically and culturally diverse backgrounds varies from 2–21%. Students identified as at-risk varies from 0–10%.

Teachers in the cluster identified a common concern with the transition of boys from primary school to secondary schools, and it was decided this would be the focus point for the cluster project. This focus was particularly relevant as 40% of the boys in the primary schools went on to attend the Lighthouse School. Teachers acknowledged that work done in Year 6 to prepare students for transition to Year 7 was crucial and that a need existed across the cluster to develop sustainable transition programmes. The project focused on the 1,750 Year 6-7 boys in the cluster schools.

The Projects

With a focus on the transition years in mind, two overarching goals were formed:

- implement and evaluate a suite of ‘boy friendly’ classroom strategies aimed at addressing boys transition issues; and
- develop teaching practices that assist a boy’s transition from primary to secondary school.

The project goals were underpinned by Imms’ (2003) model of boy-friendly curriculum that identifies safety, relationships, freedom, expression and communication, and learning styles as core components of successful pedagogy for boys. Each school developed a project to meet the specific needs of its boys.

School projects were informed by a literature review and an audit on transition issues and boys’ issues. A survey administered to all Year 6 boys in the cluster found that they were anxious about the work in Year 7 being too much and/or too difficult, and that being safe was a major concern associated with transition. In addition, boys were worried that teachers would be stricter and the number of subject teachers would increase, to the detriment of the caring relationship that existed with their primary school classroom teachers. The individual schools projects included the following:

- rocketing into research expo: inquiry, movie making, space expo;
- eportfolios;
- homework programme;
- robotics, music technology; and
- an ICT focus on core curriculum — digital story telling, web quest, animation, Think.com multimedia productions.

Impact on Boys

The following tools were used to determine the impact on boys of the projects developed by each school: student and parent surveys; teacher and student reflections; and notes from teachers’ forums.

Sandringham East Primary School’s student survey and reflection data indicated that the majority of students used their time wisely for planning and organising their work, worked cooperatively as a team, solved and overcame problems within the group, and shared the work load in their film project (Cluster YCP4, 2005).
As indicated in Figure 13, 93% of boys enjoyed this project, 90% welcomed the opportunity to work in a group of their choice, 83% would do things similarly again, 90% felt they put a lot of effort into the research of the project, 90% would like to do more projects this way, and 97% liked presenting their work this way and found it ‘fun and enjoyable’. Teacher reflections noted that ‘students wanted to work on the project all day.’ While the literacy component of the project was considerable, teachers claimed the boys did not seem to realise they were doing this. Boys’ reflections showed they welcomed the open-endedness of the filmmaking task, and valued the use of tools such as mind maps and storyboarding, which they indicated assisted with the organisation of their ideas.

Brighton Primary School’s data indicated that the majority of boys enjoyed choosing the research question and the format for the final presentation of their inquiry. Data also acknowledged ‘the benefits of undertaking research, planning and organising work, and using time wisely – important transitional skills for secondary school project’ (Cluster YCP4, 2005). Boys valued communicating and sharing their work with both adults and peers, and the co-operation and teamwork skills the project developed.

Figure 13: Year 6 Boys’ Film Project Reflections

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I enjoyed this project.</td>
<td>7</td>
<td>17</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>We had enough time to work on this project.</td>
<td>7</td>
<td>3</td>
<td>55</td>
<td>35</td>
</tr>
<tr>
<td>I liked working in a group.</td>
<td>3</td>
<td>7</td>
<td>31</td>
<td>59</td>
</tr>
<tr>
<td>I would do things similarly again.</td>
<td>3</td>
<td>14</td>
<td>38</td>
<td>45</td>
</tr>
<tr>
<td>I like doing this type of project.</td>
<td>3</td>
<td>7</td>
<td>21</td>
<td>69</td>
</tr>
<tr>
<td>I found doing this type of project easy.</td>
<td>14</td>
<td>17</td>
<td>59</td>
<td>10</td>
</tr>
<tr>
<td>All my team members put in similar amounts of effort.</td>
<td>7</td>
<td>21</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>I put a lot of work into the presentation of the project.</td>
<td>10</td>
<td>49</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>I put a lot of work into using my research facts in the project.</td>
<td>7</td>
<td>3</td>
<td>49</td>
<td>41</td>
</tr>
<tr>
<td>I did a great job working with my team members.</td>
<td>10</td>
<td>38</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>I put a lot of work into this project.</td>
<td>3</td>
<td>7</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>I could have done a better job by myself.</td>
<td>55</td>
<td>25</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>I would like to do more projects this way.</td>
<td>7</td>
<td>3</td>
<td>28</td>
<td>62</td>
</tr>
<tr>
<td>I liked presenting my work in this way.</td>
<td>3</td>
<td>49</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

Source: Cluster YCP 1–4 Report.

Wilson House’s data analysis of the boys’ reflections and the survey affirmed teacher observations that the high level of technology used to complete the eportfolios kept the boys engaged and interested. Boys believed that their work with eportfolios has or will
assist them in other curriculum areas and helped them to develop their time management skills. Students felt that transition issues, such as the apprehension felt in meeting their Year 7 teacher, was alleviated by showing their work to their future Year 7 teacher in person. Boys were motivated and excited by showing their eportfolios and felt safe in the presentation context. They indicated that it supported the formation of a personal relationship between teacher and student. Teacher reflections indicated that student skills in the use of ICT and visual literacy compensated for possible weaknesses in writing skills.

Rosstrevor’s data analysis showed that boys particularly liked the flexibility built into the homework approach that was introduced. Over a quarter of the boys completed the tasks in one hit each week, and 32% used the flexible arrangements to complete work on the weekend. Students spent more time working on their homework each week and appreciated the element of choice: 63% of the boys spent more than the prescribed 1-hour, but less than 2-hours to complete each project. They were especially motivated by the hands-on and creative activities, such as building models, and were excited by the prospect of using computers. The Internet was the most widely used resource for information. In the first trial, most boys opted to produce an essay response, but 16% produced a PowerPoint presentation, and 10% produced an information poster. In the second trial most opted to write an essay, but 20% produced a PowerPoint presentation.

Sandringham House data included student reflections, interviews with students, questionnaires, teacher observation and reflections, and the use of photographs and student commentary. Students found that the robotics programme was fun, an alternative learning experience to the usual classroom context and one that enabled students to use their hands and incorporate ICT into their learning. Furthermore, robotics allowed boys to solve problems in group situations, to take risks, be physically active and engage in social collaborative contexts. Boys were able to focus for periods of 50–60 minutes, which was longer than many teachers’ expectations of the boy’s concentration spans. Many boys believed that their robotics experience would provide them with an academic or learning ‘advantage’ over their peers in Year 7.

Sandringham Primary School’s data indicated that ICT can engage boys in education and prepares them for secondary transition, despite boys experiencing different programmes, and having varying levels of proficiency. Teacher reflections focused on the development of students’ interpersonal and intrapersonal skills through sharing their expertise with peers and across other levels of the school. Teacher reflections noted that boys who showed proficiency in ICT were often those who found everyday activities challenging. For these boys, ICT increased their opportunity for success as it engaged them as learners. Student reflections attested that the ICT programmes had skilled them in preparation for the secondary transition, as had the mentoring process which provided opportunities to work with a wide range of students.

What the Project Team Learnt

Both Sandringham East Primary School and Brighton Primary Schools found that “Expos are wonderful ways of showcasing and celebrating learning journeys” (Sandringham East PS, YCP4, 2005). Both schools attributed the success of the strategy to: flexible timetabling; providing a clear goal for the students to work towards; and provision of an authentic showcase for their achievements. They thought the strategy could further benefit the transition process if it involved primary and secondary students working together on a joint project in which secondary students mentored the primary students. This would assist in ensuring consistency of learning and teaching approaches and the use of terminology, thus making the transition to secondary school more seamless.
Wilson House found that eportfolios were a boy-friendly addition to the Year 6 curriculum. However, the strategy created some short-term problems, for example, the need for more hardware for storage of the digital data recorded by four classes, and the need for additional digital cameras. The team learnt that computer time (2 hours a week) was essential for boys to become skilled using hyperlinks and multimedia components within their PowerPoint presentations, and exploring more sophisticated use of themes, transitions and backgrounds to ensure high quality eportfolios. Eportfolios involved a substantial time commitment from all staff. A clear structure and set of guidelines for developing portfolios was essential, but flexibility in implementing the guidelines and structure was required to take advantage of opportunities at different levels of skill, creativity and interest as they surfaced (Cluster YCP4, 2005).

The eportfolio proved a better tool for transition than initially expected. Year 7 teachers stated that it was “a more efficient introduction to the boys than used in the past” and that they were able to acquire a ‘good’ idea about the personality and achievements of their future students. Teachers described watching their future students present as ‘beneficial and illuminating’.

Rosstrevor found that support from parents and students for the homework project was overwhelmingly enthusiastic. However, the approach increased teachers’ accountability for setting homework tasks and involved an additional time commitment. The project determined that for Year 7 [first year of secondary schooling] boys:

- homework should take 30–60 minutes per night;
- boys should have at most two subjects set as homework on any given night;
- homework should include tasks such as designing, drawing or building models, use of computers and completion of assignments requiring teamwork with other students; and
- homework should be communicated to boys in a written format and teachers should ensure it is entered in their Record Books (Cluster YCP4, 2005).

The Sandringham House team learnt that the success of the robotics programme as a transition programme did not transfer to music technology using ICT. Teachers discovered that robotics is about doing your job and solving a problem, whereas music is a more emotionally complex task requiring collaboration and sharing of ideas. Simply using technology did not automatically promote engagement, collaboration or a sense of ownership.

Sandringham Primary School’s strategy of embedding ICT skills in the core classroom programmes worked because of the explicit teaching of ICT skills, and the creation of opportunities for students to practise, demonstrate and model their skills. Also, of value was the commitment to keeping detailed records of individual students’ progress and perceptions. The team learnt the importance of establishing ongoing dialogue among teachers to inform their practice, and the sharing of their successes with the use of ICT. Teachers acknowledged that systematically collecting and analysing data about boys’ learning and transition has provided a body of information to inform future curriculum development within the school. The use of outside experts and school visits have been positive in expanding teachers’ awareness of ICT applications and the need to integrate ICT in their classroom practice.

The project undertaken by the Beachside cluster tested a number of strategies that can be employed to engage boys in their learning:

[B]oys can be suitably catered for in ways that are boy friendly if teachers are able to utilise ICT in their teaching, if their curriculum involves critical event projects and if existing programmes, such as homework and robotics, can be transferred to all subject contexts. (Beachside Cluster YCP4 2005)
This project was undertaken across a cluster of schools that serve a predominantly middle-class population. Further research needs to be undertaken to assess the potential of the strategies used in schools serving other populations of students.

EDEN CLUSTER

Project Background
The Eden cluster comprised one secondary co-educational government school (Eden Marine High School), five government primary schools (Eden Public School, Merimbula Public School, Pambula Public School, Towamba Public School and Wyndham Public School) and one Catholic co-educational primary school (St Joseph’s Catholic School). The socio-economic status of the coastal town schools reflects middle class children and transient students from families working in the hospitality and tourism industry. The hinterland schools have a much more stable population, with most of their students coming from lower socio-economic status backgrounds.

The cluster’s Hierarchical Mentoring Programme, evolved out of a concern by the Lighthouse School, Eden Marine High School, for boys’ negative behaviours and their failure to cope with classroom demands. School records revealed that boys were involved in 75% of school suspensions. The school’s Conduct Disorder Programme was filled exclusively with boys, and boys accounted for only 25% of school academic awards. With the closure of the regional Wilderness Programme and the Behavioural and Attendance Programme, the school felt decisive action was needed to address boys’ ‘aggressive style of relating’, their ‘hyper-masculine behaviour and interests’ and their ‘derogatory attitudes toward women and minorities’ (Biddulph, 1997).

The Project
In response to these concerns, Eden Marine High School (EMHS) created a Hierarchical Mentoring Programme for at-risk students that involved hands-on repair of bicycles under the tutelage, supervision and guidance of retired men from the local community. In the 2004 project trial of the strategies, boys targeted for inclusion in the programme included those identified as at-risk in Years 5–6 in the cluster primary schools. Year 8 boys who had themselves been mentored the previous year were asked to work alongside the adult men and a primary student in a co-mentoring process.

The 2–3 year gap between the primary school boys and the high school boys was not large enough for mentoring to work effectively—the older boy mentors frequently still had emotional needs that required attention. In 2005, Year 10 volunteers were recruited to join the hierarchical mentoring programme. The results of the project reported below are focused on two rotations of the project in 2005. Boys were selected from the five cluster primary schools and were mentored by four adult mentors and Year 10 student mentors.

The project aimed to:
- develop positive relationships among the three males in each group through hierarchical mentoring; and
- increase engagement with learning and motivation to learn.

A critical friend conducted a workshop for teachers and adult mentors. This workshop offered those involved in delivering the programme an opportunity to reflect upon the latest research on boys’ issues, particularly in relation to boys in education, and the chance to discuss ways of applying some of these ideas to their own teaching and mentoring contexts.
Impact on Boys

The outcomes achieved by seven or eight boys for whom sufficient data is available (depending on outcome) of the 10 participating boys in 2005 included:

- improved participation, resilience, patience, commitment to seeing through a task;
- an improved sense of self-worth and positive self-image;
- developing a positive relationship with their mentors and others based on a sense of connectedness to the mentor;
- a positive learning experience; and
- increased and more positive participation in normal classes.

An example of a record of teacher’s weekly observations is presented in Figure 14. The evidence indicates positive outcomes for most of the boys. However, gaps in the records, school counsellor reports, cluster meeting minutes and other data sources limit deeper analysis, interpretive comments, and triangulation of data.

Figure 14: Teacher’s Observations for an Individual Boy

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-programme summary</td>
<td>Low rating of skills and achievements. Occasional improvements but also erratic negative behaviours. Finds hard to sustain stable behaviour and work.</td>
</tr>
<tr>
<td>Programme commencement</td>
<td>Low rating of skills and achievements.</td>
</tr>
<tr>
<td>Programme mid way</td>
<td>Showing improved ratings of skills and achievements – mid ratings.</td>
</tr>
<tr>
<td>Programme completion</td>
<td>High ratings for participation and responsibility – sustained medium ratings for work outputs.</td>
</tr>
<tr>
<td>Teacher’s comments</td>
<td>Enthusiasm for programme from beginning. Marked improvement in attitudes towards work and behaviours by middle. Increase in self-esteem and confidence by end. Pride in his PowerPoint presentation to class at end. Sad the programme is over.</td>
</tr>
<tr>
<td>Post-programme summary</td>
<td>Sustained high rankings across all skills and achievements throughout final term. Maintained positive attitude to school and self.</td>
</tr>
</tbody>
</table>

Source: Cluster YCP 1–4 Report.

Student 1, for whom the data collection was relatively complete, highlights the significant benefits that can be gained from this programme. The mentor’s assessments of the boy’s developing confidence correlated with the teacher’s assessments of the boy’s rising self-esteem and confidence and his increasing participation and success in classroom activities. The final report noted that the teacher’s observations of school improvement supported the mentor’s observations of increased patience and resilience with the bike tasks and the increasing willingness to develop relationships as a result of a positive mentoring experience. As with other students in the project, ‘the quality of mentoring (evident in the feedback observations) and the matching between a bright receptive boy and an insightful, responsive mentor’ were pivotal to achievement of the learning outcomes (Cluster YCP4, 2005).

The programme generated ‘genuine excitement and energetic response’ for the boys and the mentors were “glowing in their observation of the boys’ involvement and commitment” (Eden YCP4, 2004). They particularly remarked upon the resilience shown by the majority
of boys when tasks became challenging. This resilience frequently transferred to the classroom with the teacher of two boys noting they were “now trying so hard and doing well”—the antithesis of their previous apathetic and disinterested behaviour.

The PowerPoint presentations of the bike repair workshop processes were of a ‘commendable quality’ and ‘attacked with verve, gusto and enthusiasm’ that had not previously been observed in the boys. Some teachers reported that boys reluctant to do school work were now working over lunch periods to have their PowerPoint presentations ready. One school principal noted ‘a remarkable turn around in behaviour’ and a look of satisfaction on the boys’ faces that had been missing for some time. Parents too observed an improved sense of self-worth and attitude at home. Entry to an ‘academic’ class at EMHS in 2005 was a result for one of the boys and was attributed to the project.

What the Project Team Learnt

The boys who were able to talk and open up to their mentors were also the ones whose school performance was noticeably improved. (Cluster YCP4, 2005)

The attributes of the adult mentors were critical to the success or failure of the programme. The team found that well matched boys and mentors significantly raised the success rate of the programme:

Unfortunately, the final choice of participating boys was in the hands of the primary schools….In some cases inappropriate choices were made—especially when the selecting teachers were not familiar with the goals of the project and were primarily influenced by their own and different reasons for selecting students. (Cluster YCP4, 2005)

Ideally the selection process should involve the school counsellor, the programme coordinator and the primary school teacher.

In some instances, the Year 10 student mentors seemed to benefit as much from their mentoring role as the Year 5-6 boys who were mentored, and took the lead in mentoring the boys. Their presence was also valuable “in developing a sense of team effort and of breaking the intensity of a one-to-one encounter” (Cluster YCP4, 2005). An additional benefit was that their presence reduced the possibility of “issues relating to one man and one boy being alone and the potential of (accusations of, or actual) sexual abuse.” However, the older boys need to be carefully selected to ensure they are not more needy than the mentee boy, as was occasionally the case.

The project team also learnt the importance of consistency in record keeping for processing data and determining outcomes for the project. Patchy data meant that, in a number of cases, it was difficult to triangulate data and draw conclusive findings.

Despite inconsistencies, data gaps and extraneous factors, the project indicated that programmes that directly seek to develop skills, such as interpersonal communication through mentoring can assist boys in their relationships with others and have a positive effect on their lives. However, the experience of the project team also led them to conclude that:

…boys with ‘hard core’ anti-social attitudes and behaviours, especially those boys who have no ability to take responsibility for their behaviours or empathise with others, [were] beyond the therapeutic bounds of this programme…boys who are in much need of some special and positive attention, but do not display these ‘hard core behaviours’…appear to have benefited most from the programme. (Cluster YCP4)

The key factors in continuing the programme are finding sufficient and appropriate male volunteers to act as mentors, and to match the mentoring men to the boys on the basis of complimentary attributes and personal qualities and skills. Above all, the successful
implementation of the project is dependent upon committed and energetic leaders to take responsibility for: the recruitment and training of men and boy mentors; the liaising with schools; setting up the bike repair workshop; and the purchase and storage of bike parts, etc. The success of the mentoring process in establishing supportive relationships between the boys and the mentors based on mutual respect and understanding (Slade, 2002), implies the need to sustain such projects beyond the short term to facilitate the assessment of the academic impact that may be evident from male mentoring.

MT CLAREMONT CLUSTER

Project Background

The cluster comprised five schools: Moerlina Primary School, a K–7 coeducational independent community school with 100 students; Quintilian Primary School, a K–7 coeducational independent community school with 240 students; Lance Holt Primary School, a K–7 coeducational independent community school with 100 students, City Beach High School, a public coeducational school spanning Years 8–10 with 150 students; and Wesley College, a K–12 independent school with 1200 students. School partnerships already existed between and across schools in the cluster, and the opportunity to build a professional community of practice by working on a shared project was welcomed.

School test results, state-wide Western Australia Literacy, Numeracy Assessments (WALNA) and teacher observations of students' writing showed the need to improve boys' writing skills and their willingness to engage in all aspects of classroom writing lessons. Observations by teachers and a teacher-designed oral language test administered in 2004 revealed a difference between boys and girls in the expressive mode of oral language. After accessing research by Rowe & Rowe (1999) and others, which suggested an explicit teaching model improves learning outcomes for boys, it was decided that each school in the cluster would identify a strategy or strategies that met the needs of its targeted students, but that all strategies would have a focus on improving boys’ literacy learning (writing and oracy).

The Project

The cluster set three goals to achieve over the course of the project:

- improve the motivation and engagement of boys in literacy learning;
- improve literacy learning outcomes for identified boys; and
- improve the effectiveness of literacy teaching programmes.

Figure 15 provides an overview of the strategies implemented and outcomes sought in each of the participating schools.

To measure the impact, work samples from several randomly selected boys were collected, analysed and compared before and after the implementation of the strategy/strategies. These boys were interviewed about their attitude to, and interest in writing, and a writing attitude survey was undertaken with all boys to establish any shift in motivation towards writing.
Figure 15: Strategies Implemented and Outcomes Sought by Individual Schools

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Targeted Boys</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit teaching of grammar.</td>
<td>Year 5</td>
<td>Improving writing competency.</td>
</tr>
<tr>
<td>Working with children on a number of different teacher directed activities.</td>
<td></td>
<td>Increasing motivation to write.</td>
</tr>
<tr>
<td>The use of text-to-speech software — a computer package that reads back to children what they have written.</td>
<td>Year 4</td>
<td>Improved writing competency.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motivation to write.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motivation towards the editing stage of the writing.</td>
</tr>
<tr>
<td>The Integrated Teaching Strategies Framework.</td>
<td>Years 6–7, Year 9</td>
<td>Improved writing competency.</td>
</tr>
<tr>
<td>Stepping Out focus on ‘pre-writing’ tasks such as developing ideas and establishing the organisation of the text.</td>
<td></td>
<td>Improved attitude to writing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved engagement in writing lessons.</td>
</tr>
<tr>
<td>Journal writing — children writing freely and regularly in their own personal journals.</td>
<td>Year 3, 4, 5, 8 & 9 classes at three schools.</td>
<td>Improved writing competency.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved attitude to writing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved willingness to sustain writing.</td>
</tr>
<tr>
<td>Philosophy teaching — a model of inquiry, and the development of a 'community of inquiry'.</td>
<td>Two pre-primary classes.</td>
<td>Improved oral language competency.</td>
</tr>
</tbody>
</table>

Source: Cluster YCP 1–4 Report.

Impact on Boys

Explicit Teaching of Grammar

This strategy involved working with children on a number of different teacher directed activities and tasks for the teaching of grammar in writing. The writing samples of two selected boys were used to assess the impact of the strategy and a writing attitude survey was carried out with all nine boys involved to establish any shift in motivation toward writing.
Both sample students produced writing of a higher level of competency after the strategy implementation. Improvements for each student were in the following areas.

Student 1:
- text logic and sequence
- descriptive language
- amount of detail given
- sentence complexity.

Student 2:
- use of correct punctuation
- introduction to the text
- use of text type.

Data from the Writing Attitude Survey administered to all boys in the grade (n=9) is summarized in Figure 16. All boys involved in the project improved their attitude to writing. The effect size of 0.68 indicates that the improvement was relatively large. This evidence was supported by interviews with two randomly chosen students and the teacher’s journal notes.

![Figure 16 Results for the Writing Attitude Survey](image)

<table>
<thead>
<tr>
<th></th>
<th>Pre-Test (Percentiles)</th>
<th>Post-Test (Percentiles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>05</td>
<td>38</td>
</tr>
<tr>
<td>Student 2</td>
<td>07</td>
<td>17</td>
</tr>
<tr>
<td>Student 3</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Student 4</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>Student 5</td>
<td>35</td>
<td>72</td>
</tr>
<tr>
<td>Student 6</td>
<td>38</td>
<td>82</td>
</tr>
<tr>
<td>Student 7</td>
<td>51</td>
<td>93</td>
</tr>
<tr>
<td>Student 8</td>
<td>63</td>
<td>65</td>
</tr>
<tr>
<td>Student 9</td>
<td>82</td>
<td>86</td>
</tr>
</tbody>
</table>

Effect size 0.68

Source: Cluster YCP 1–4 Report.

Text to Speech Computer Software

All three sample students produced narrative writing of a higher level of competency after the implementation. However, there was no change in the overall competency for two students’ exposition texts and there was a decrease in competency in the third student’s exposition text. The Writing Attitude Survey administered to all boys in the Year 4 class (n=18) before and after strategy implementation showed an improved attitude to writing for 44% of the boys in the class. Two of the boys had considerably improved attitudes to writing (Cluster YCP4, 2005).
The programme’s spelling and grammar checker in the software generated a more positive attitude to the editing process, but performance using the software was dependent on students having competent keyboard skills. Although motivation toward editing improved, students’ editing performance had not improved overall. Student interviews revealed that some of the more competent boys found the voice read-back aspect of the software to be irritating:

It’s best not to have it on all the time, but just use it when you’re stuck on a bit…It never puts in any exclamations so your work sounds really bad. If it had exclamations it would sound better. (YCP4, 2005)

However, the less competent students found the read-back facility useful.

Integrated Teaching Strategies Framework

Data collected from boys (n=9) across the three schools showed that all boys produced narrative writing of a higher level of competency as a result of the strategy (Figure 17). All students improved in both Narrative and Exposition skills. The effect size for each skill is sufficiently high to indicate that there was a real difference between pre- and post-test scores in both Narrative and Exposition skills.

Figure 17: Overall Writing Assessment Scores

<table>
<thead>
<tr>
<th>School 1</th>
<th>Narrative Pre-Test</th>
<th>Narrative Post-Test</th>
<th>Exposition Pre-Test</th>
<th>Exposition Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>19</td>
<td>30</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Student 2</td>
<td>25</td>
<td>34</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Student 3</td>
<td>18</td>
<td>20</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>School 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student 1</td>
<td>17</td>
<td>31</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>Student 2</td>
<td>15</td>
<td>27</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Student 3</td>
<td>20</td>
<td>25</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>School 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student 1</td>
<td>40</td>
<td>42</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>Student 2</td>
<td>31</td>
<td>34</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Student 3</td>
<td>17</td>
<td>31</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>Effect size</td>
<td>0.98</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Cluster YCP 1–4 Report.

The **Writing Attitude Survey** was administered to all boys (n=59). At Lance Holt School, 56% of the boys developed a more positive attitude to writing associated with the implemented strategy. At City Beach High School, 46% of boys, and at Moerlina 41% improved their attitude to writing. The strategy was considered successful in that it resulted in a significant number of boys in the classes developing a more positive attitude to writing. This was substantiated in student interviews and teacher journal entries:

Children who find writing difficult or frightening were able to express quite sophisticated messages in an unthreatening and fun medium. In a class where the boys outnumber girls 4:1, the level of engagement was made very clear to me when the children worked right through their sport time without even noticing!
When I dismissed them for morning tea, they wouldn’t go, instead gathering to talk about and look at each other’s work. (Cluster YCP4, 2005)

Journal Writing

Although there were variations in the way schools implemented this strategy, all schools adhered to the following principles: students were free to write what they want; writing was a sustained activity; students were free to express thoughts, ideas & personal feelings; there was a time limit; and the journals were confidential, but, with students’ permission, could be collected and read by the teacher or shared with others.

Of the seven students whose narrative writing was assessed, all produced narrative writing of a higher level of competency following the implementation of the strategy, but two boys showed improvement beyond expectation, considering the short time the strategy was implemented — the effect size of 1.48 suggests that there was a significant improvement in Narrative skills following the implementation of this strategy, but there was no improvement for the three students tested on their Exposition skills (Figure 18).

<table>
<thead>
<tr>
<th>School 1</th>
<th>Student 1</th>
<th>Narrative Pre</th>
<th>Narrative Post</th>
<th>Exposition Pre</th>
<th>Exposition Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>13</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Student 2</td>
<td>16</td>
<td>21</td>
<td>-</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Student 3</td>
<td>8</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Student 4</td>
<td>10</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>School 2</td>
<td>Student 1</td>
<td>47</td>
<td>48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Student 2</td>
<td>45</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Student 3</td>
<td>45</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Effect size</td>
<td>1.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Writing Attitude Survey (n=12) revealed that 50% of students displayed a more positive attitude to writing after strategy implementation. The 50% whose attitude did not improve, indicated that they were more comfortable and relaxed about writing and less desirous to write simply to please the teacher. Teacher journals, however, showed that in the Year 4–5 class most students improved in their attitude to writing while two students developed a significantly more positive attitude to writing (Cluster YCP4, 2005):

Class attitudes to writing have improved noticeably over the time of the project. Students are now more engaged in writing time. A group of students has since formed their own journal club and are writing articles in class and meeting with parents at lunch time to plan their own magazine. (Cluster YCP4, 2005)
Philosophy

The philosophy strategy aimed to stimulate children’s thinking and encourage them to express their thoughts. Emphasis was on dialogue and the promotion of analysis, reflection and creative and unique thought. Evidence was collected from notes teachers made as students carried out the philosophical activities. These notes enabled analysis of the length, complexity and frequency of the oral responses of specific students. Of the twelve boys selected for close analysis in two pre-prep classes, the boys in Class A, in every instance were able to pose questions in response to a stimulus picture following the implementation of the strategy, and in Class B two-thirds of the boys were able to do so. The following excerpt from the cluster’s YCP4 (2005) illuminates the results:

Analysis of the students’ oral language before and after strategy implementation showed significant development in many aspects of oral language that was far beyond what the teachers expected. Results challenged accepted notions of pre-primary children’s thinking and verbal abilities, particularly in regards to their ability with abstract thought. In pre-strategy assessments, the students were observed to be ‘talking to the picture’. In post-strategy assessments students were observed to be ‘talking about the picture’ it was also noted that the students were more able to ask their own questions and regularly these were in a high order thinking category. The students displayed a wider vocabulary, greater confidence in expressing their opinions and thoughts and greater ability to think at a deeper level. (Cluster YCP4 2005)

What the Project Team Learnt

Developing the YCP2 matrix for evaluating the impact of the strategies at the beginning of the project was found to be essential. The evaluation matrix helped to clarify outcomes, targets, data collection procedures and kept everyone focused. As one teacher acknowledged in her journal:

The research project led me to examine more systematically what works. I know that I certainly made improvements to my teaching practice regarding grammar. I have learnt more child-centred strategies that fit in naturally with their developmental needs. (Cluster YCP4, 2005)

This process enabled all schools to scope the project and see it as manageable chunks (Cluster YCP4, 2005). The importance of capacity building and reflective practice was highlighted in the final report, stating that to improve student learning, instruction must be improved. All teachers reported this had assisted in them having better strategies and improved their pedagogy.

In reflecting on the learning from the project, the team concluded that structure and support provides the security boys need to take the risk to write, and the importance of only presenting one concept or one strategy at a time: “If boys feel that they can’t do it and do it right at the same time, it’s too big a risk of failure” (Cluster YCP4, 2005).

Several teachers commented on the value of Think.com and how it had broadened the possibilities for peer feedback and interaction. It was found to be particularly helpful for teaching grammar—a new way of providing feedback—as evidenced by this comment from one of the teachers in the project:

The utilisation of Think.com was an absolute blessing. Think.com enabled students to store their work on line. They were then able to access it from home. However, the main benefit was the way it afforded interaction. I would email children to suggest improvements in their work. They would send ‘stickies’ to one another giving positive and quite explicit feedback. (Project Teacher)

The team also learnt there was an increase in boys’ willingness to undertake writing tasks and they were motivated to do so when computers were involved. However, for some
students whose typing skills were poor, the use of pen and paper to create their written texts was still preferred. Cluster teachers are mindful that variables and factors must be taken into consideration when assessing the project’s outcomes such as: the novelty of working on a computer having a bigger impact on students’ motivation to write and edit work than the specific software programme; timetabled changes; and the impact of other projects. We need to be cautious in interpreting the results because of the small numbers of students involved, however, the relatively large effect sizes in several cases indicates that real change did take place. The documented improvements in boys’ literacy learning (writing and oracy) can be attributed, to some extent, to the strategies and approaches implemented, which included: explicit teaching of grammar; the Teaching Strategies Framework; journal writing and Philosophy for Children approaches to learning.

Of interest, were the unexpected outcomes from the project, for example the pre-primary children clearly demonstrating a capacity to verbalize abstract thoughts and the ability to talk about their individual thinking processes. This observation challenged teachers’ understandings of developmental theories of early childhood, which argue that pre-primary aged children generally work at a level of concrete operations.

KEW CLUSTER

Project Background

The Kew cluster was comprised of six government coeducational schools—five Primary (Kew Primary, Kew East Primary, Hawthorn West Primary, Belle Vue Primary, Roberts McCubbin Primary) and one High School (Kew High School) in the north east of greater Melbourne. The schools serve a wide range of students from varied cultural backgrounds. The project of the cluster, Engaging Boys in the Learning Process, was centred on providing more opportunities for boys to maintain an ongoing engagement with the curriculum. This project was part of a wider programme where the cluster sought to build and sustain a culture that embraced pedagogical improvement and student engagement.

The project had three goals:

- improve the social skills and confidence of boys to move beyond the confines of traditional male stereotypes;
- improve literacy levels for boys’ in Years 4–8; and
- improve teaching strategies and pedagogy for boys.

The Project

In 2004, the cluster collected and analysed baseline data from a number of sources including: the Emotional Literacy Primary Checklist (ACER) at Year 4; the Emotional Literacy Secondary Checklist (ACER) at Year 7; DE&T Attitudes to Schooling Survey at Year 4 and Year 7; attendance data; first aid records; behaviour incident records; and anecdotal information about voluntary 'help seeking'.

The surveys undertaken during the project trial indicated no discernable difference between boys and girls in regards to emotional and social skills. As a result, the cluster derived a more specific aim, which was to determine if the strategies in its programme would also improve boys' sense of connectedness to school and their own learning. This goal was addressed primarily through the strategy of conducting teacher and student forums and via the negotiated curriculum.
In literacy, the baseline data generated from the state-wide testing programme and teacher assessments, indicated boys in the cluster generally performed at levels below that of girls. As a result, the cluster decided to focus on boys who were considered reluctant writers and therefore at risk of being unsuccessful in literacy. The Author in Residence (AiR) initiative was implemented to address boys’ underperformance in writing. The task set for the students was an animated television show, something the teachers saw as having a high level of appeal.

Although baseline data from the Learning Preferences Survey administered during the project trial in 2004 did not reflect any significant differences between girls and boys, the cluster decided to focus on teaching strategies for boys. This goal was to be achieved by: (a) setting-up a boy-friendly classroom (Imms, 2003); and (b) implementation of a negotiated curriculum. The theoretical basis for the boy-friendly classroom indicated ways in which the physical environment of a school classroom could be adapted to potentially improve the learning of boys. The negotiated curriculum initiative involved the schools jointly developing a common unit of work for their Middle Year’s students around the question ‘What is it that scientists do to make sense of the world?’ This strategy investigated the value of a negotiated approach in developing a unit of work to enhance student (especially boys) engagement and responsibility for, and of, their learning.

Impact on Boys

Boys’ forums highlighted the fact that “sports, physical education and related games were of significant importance to the boys across the cluster” (Cluster YCP4, 2005). Closely linked to this was the high percentage of boys who saw the school facilities as significant. Value was also placed upon: the friendships the boys were able to create in the school environment; access to recess and free play to facilitate both friendships and physical activities; and having girls as part of their school environment. ‘Good’ teachers were noted in the forum discussions at three of the five cluster schools.

The findings on the impact of the project were mixed. Teachers across 3 of the 6 schools observed the development of positive relationships with their boy students as a very high priority. There was a belief that teachers in some schools catered for individual learning differences of their students, and/or their learning styles. Four schools believed they met the learning needs of their boys through the provision of ‘hands-on’ activities. Three schools cited increased knowledge and acceptance of the characteristics of boys as an important means of enabling them to more adequately cater for the educational needs of their boys. Only one school articulated catering for physical activity as a priority, and the use of IT as teaching tool was minimally considered. Whilst the “strongest response from teachers across the cluster was in terms of building positive relationships between teachers and the boys, this was not supported to any real degree by student responses” (Cluster YCP4, 2005). In addition, survey outcomes from the DE&T Student Attitudes to Schooling Survey at Years 5/6 suggested that the boys were far less connected to their teachers than the girls were, in all but one of the five forum schools. Though the teachers articulated a range of pedagogical strategies designed to engage boys in effective learning, there was little awareness of these strategies, or the impact of these strategies, by the boys themselves. Finally, there was very minimal use of IT identified within any of the student or teacher surveys as an appropriate way to engage boys within the learning process.

The AiR programme to improve the literacy skills of reluctant writers in Year 4 and Year 8 was, for the most part, successful. The data that was generated was qualitative in nature and primarily consisted of field notes and/or reflective journal entries based on teachers’ observation of students and work samples collected from students as part of the programme. Some schools also interviewed/surveyed students about their participation.
using semi-structured interviews, focus group discussions or PMI (Plus, Minus, Interesting) surveys. Overall most of the teachers in the primary schools were of the opinion that the sessions had been successful. At one school, the teacher noted after the sixth session that the boys “stated that they look forward to the sessions with the [AiR] and think about their project throughout the week, which is very encouraging” (Cluster YCP4, 2005). Some teachers also saw an improvement in the way the boys communicated orally and in writing in classes during the programme. Students’ comments “I have improved my writing skills so much and I want to write a lot more!” and “I can now think of ideas quicker and I know how to plan and draft and publish” (Cluster YCP4, 2005) support these findings, as does a parent’s feedback, who wrote “expressing their delight in their child’s enthusiasm towards writing” (Cluster YCP4, 2005).

An unexpected outcome was the enhanced visual art skills the boys developed. A teacher from a primary school was of the opinion that most of the boys at her school “will retain the drawing skills taught”. A number of teachers also noted that as the sessions developed, the boys began to ‘take risks’ with their writing, attributing this to the author’s rule of ‘no idea is a bad idea’. Some teachers noted that the boys enjoyed the opportunities that were provided for them to access computers and use them for specific tasks associated with the programme. However, in their reflection on the programme only a small percentage of the boys made any mention of the use of ICT; they made more mention of the handwriting, reading and drawing activities.

At the High School, the overall outcome was less successful than for the Year 4 boys in the primary schools. The teacher who ran the programme in the secondary school noticed that while the Year 8 boys enjoyed the Arts component of the programme, they remained, for the most part, reluctant writers. She noted that towards the end of the programme, staff from the school needed to motivate the boys to get tasks finished, which seemed counter-productive. The teacher credited the boys’ continued reluctance in regards to writing, to the secondary school structure (not enough time to run the programme in a thorough way) and in the way it was implemented in her school.

The cluster also initiated model classroom set-up in an attempt to improve teaching strategies and pedagogy for all students, especially boys. The overall response across the schools that participated in this part of the project was that it had been ‘a great motivator and positive reinforcer’ (Cluster YCP4, 2005). Students took more responsibility for the maintenance and upkeep of the room when they were asked to make an input into the nature of the modifications to the room. In addition, more than half of the teachers who took part reported an improvement in the boys’ literacy which they attributed in particular to the establishment of a Reading Corner, characterised by comfortable furniture and a range of texts including those either chosen by the boys or chosen for them based on their perceived likes.

All teachers across the cluster schools involved with the negotiated curriculum initiative felt there had been a shift in the pedagogy used in their classrooms as they implemented this unit of work. The significance of the shift was dependent upon where schools were prior to the investigation. Overall there were two consistent foci in teachers’ reflections on the learning styles of boys — the use of hands on activities, and the use of ICT.

What the Project Team Learnt

While the majority of the primary teachers acknowledged the short-term gains made in regard to the boys’ improved attitude to writing, they had reservations about the long term impact of the project. The mixture of creativity and writing was well balanced and was an inspiration to the reluctant writers. The visual art and dramatic art foci of the sessions engaged the students. This appeared to be a significant contributing factor for maintaining
the boys’ motivation to continue to contribute to the project. What was seemingly underestimated at the outset of the programme was the enhanced visual art skills the boys developed in the sessions. While the programme included the use of computers, neither the staff nor the students mentioned the use of computers as being a significant factor in the boys’ development.

Engagement with the visual art components of the programme and the positive male role modelling by the visiting author were viewed as being strengths of the programme by many staff and students, however, most of the boys still came out of it needing assistance with their writing. The view expressed by the teachers was that longer term improvements in the boys’ writing skills may have eventuated had follow-up activities been undertaken back in class instead of the AiR programme having been an independent and an isolated activity.

Based on their findings, the cluster concluded that students should be directly involved in the decision making process when initiating a boy-friendly model classroom set-up, and that accompanying teaching strategies should be implemented as part of the set-up in a whole-school approach to the model-classroom. However, the cluster found that the strategy of:

> replacing the existing fluorescent lights in the room with those of a lower wattage did not seem to make a significant difference. (Cluster YCP4 Report)

The implications from the implementation of the negotiated curriculum model were encouraged to continue their investigation into the inquiry model beyond this project because teachers have observed potentially positive outcomes across their classrooms, and specifically in relation to education of their boys.

Although the AiR programme can be a useful catalyst to engage reluctant writers, the long term success of such a programme is partly dependent on the way the school utilises and extends the experience once the artist has completed his/her engagement. The feedback from some teachers indicated that little was done outside the sessions to further develop the work that took place there. As a result, in some instances the written and visual art work was not recognised as much as it could have been, which is counter to the effort that was made within the programme to enhance the boys’ confidence and to celebrate their achievements. An essential lesson from the project is the need to build follow up sessions into future AiR programmes, where the skills and knowledge learnt in the programme, can be further developed for the boys’ in regular classes.

Overall, the cluster considered that the project had been a success and generated interesting and useful data that will be of use in further work to support boys’ learning. However, trying to motivate reluctant writers can be very difficult and while this programme had many positives, as expressed by one teacher “it would seem that the processes of getting the boys to write more confidently will be a long process of constant encouragement and external motivation” (Cluster YCP4, 2005).

LISMORE CLUSTER

Project Background

The Lismore cluster is in a rural area situated at the heart of the Northern Rivers region on the north coast of New South Wales. High levels of student mobility, topographical features, socio-economic disadvantage, a high level of single parent families and family dysfunction are the major factors impacting upon student outcomes in the Lismore area. The cluster comprised two Government Pre to Year 6 schools (Lismore South Public School, and Coraki Public School) who were experiencing an increase in the number of students at-risk with boys being over represented in suspension data and BST results.
Both schools are on the Priority School Funding Programme. The cluster's project, *Learning and Mentoring Programme* (LAMP), was a short-term (15 weeks) intervention that operated from Week 3 of Term 4 to Week 8 of Term 1 the following year. The programme was designed specifically to support students in the early-years of schooling who were at-risk of behavioural and learning difficulties in literacy and numeracy. Half of the boys in the programme were Indigenous.

The Project

The Social Skills aspect of the programme involved sessions from Social Stories, Social Skills Curriculum, and Working With Social Skills in the Classroom. Social stories were used to explain and illustrate a situation that required an appropriate response from students. The aim was for the teacher to consider the situation from the perspective of the student and to identify and share information that may be missing, with a social story. As a result of reflecting on the troubling situation, the student develops an improved social understanding. These sessions also aimed to enhance speaking and listening skills and provide the opportunity for students to explore aspects of self and others.

The numeracy (Number) sessions involved *Count Me In* and *Count Me In Too* (NSW Department of Education & Training, 2005). The Count Me In programme incorporated and contributed to research into the way students best learn mathematics. The teaching approach was problem-based. Students were routinely engaged in problem solving just beyond their current level of knowledge.

The spelling sessions involved a phono-linguistic programme with a systematic approach to teaching (Case, Phillpot & Walker, 2005). The children learn to listen to the sounds in speech and record words sound by sound. The three key phonemic awareness skills, blending, segmenting and phoneme manipulation, formed the basis of lesson planning. The aim of the lessons was for students to develop an automated response to decoding the written word.

The assessment tools used to analyse the data comprised the Waddington Diagnostic Reading Test, Waddington Diagnostic Spelling Test, PM Reading Running Records, Count Me In Too Profile, Sounds~Write Diagnostic Tests, Social Skills Rating System, and in-class observations, and behaviour checklists.

To assess the impact of the project, baseline and exit measures were taken for the group of boys in the project in each school and for a comparison group of boys who were in the normal school programme. In the discussion below, the former group of boys are referred to as the ‘target’ group and the latter as the ‘control’ group. Only some of the measures are reported here, others can be accessed in the cluster YCP4 Report.

Impact on Boys

All boys in the target group made progress over the 15-week programme. The Waddington Reading Assessment indicated that a number of targeted boys were reading above their chronological age by the end of the programme. Boys’ average reading age improved by 6 months for the targeted boys in one school, with all boys making progress — compared to only 4 of the 10 boys in the ‘control’ group. In the second school, all targeted boys made progress, with the average reading age improving by 11 months. This compared with 3 of the 9 boys in the ‘control’ group making progress over the same period, 4 regressing and 2 remaining the same.

The Waddington Spelling test indicated an average spelling level increase for targeted boys of 6.5 months in one school and 5.5 months in the other school. The comparable gain for boys in the ‘control’ groups was 2.8 months in each school.
Reading benchmarks (*PM Benchmark Kit* aligned with *Reading Recovery Levels*) indicated that 3 of the 10 targeted boys reached level 25 or above (compared to none in the ‘control’ group at one school. The average increase in reading levels for the targeted boys in that school was 7.2 levels (‘control’ group, 3.3 levels), and in the second school the gain for targeted boys averaged 6.1 levels, compared to the average gain for the ‘control’ group of 2.3 levels.

Several of the boys had reached Year 2 not knowing how to use the alphabetic code. As the students progressed from Kindergarten to Year 2, the knowledge gap widened and absences increased. The phonological approach enabled the students to write and spell words for the first time and the use of individual whiteboards encouraged the students to put pen to paper without worrying about corrections.

There was an improvement in numeracy outcomes for targeted boys compared to the ‘control’ group boys in each school also. Having the time to sit with each student individually and introducing a “concept in a prescriptive manner produced measurable success” (Cluster YCP4, 2005). The students practiced the learnt skill or concept with concrete games. Arriving at an understanding provided significant enhancement of self-esteem for students who previously could not recognise or write a numeral. The average percentage gain against the baseline assessment for targeted boys was 38% and 30% in the two schools, compared to 28% and 24% for the ‘control’ group.

There was an improvement in attendance for the boys in the project. At one school, 5 of the 11 boys had improved, 3 had the same level and 3 had poorer attendance, compared to the two previous terms. This contrasts with 5 of the 10 students in the ‘control’ group having poorer attendance for the same period. At the other school, 7 of the 9 boys in the project had improved attendance, compared to the two previous terms, while 6 of the 9 students in the ‘control’ group also had improved attendance. There was a large difference in attendance between Indigenous and non-Indigenous students, however, Indigenous students showed the most improvement in attendance as a result of the project.

What the Project Team Learnt

For Indigenous boys, using decodable text was important. The boys needed to see the connection of sounds to words, and then to practice the skill of decoding. A major breakthrough for teachers and students was in writing. Writing on a prepared worksheet was not beneficial to these students. Boys (and girls) were unable to track from left to right and top to bottom of the worksheet. Students had great difficulty in understanding that the line below a picture was the space where they were to write their sentence. Teaching required a large amount of repetition, explicit and direct instruction of pointing to the picture then to the space for answering to achieve success. Identifying this difficulty helped teachers understand why Indigenous students found it difficult to complete assessments, and often exhibited challenging behaviours that could be attributed to not understanding what was expected of them.

The use of ‘gentle teaching’ was an important and receptive strategy. The students had often been in trouble and while there were still very strict parameters for behaviour, breeches of these were dealt with using social stories and discussion, rectifying the problem and looking at ways to stop the behaviour from recurring in the future. A four-step behaviour process—warning, red chair, buddy time-out, big time-out—was consistently implemented.

Particularly important to this project was the teacher’s role in removing students’ fear of failure and encouraging questioning. The teachers felt that “with the fear of failure removed, the student feels confident to ask questions without being ridiculed by peers” (Cluster YCP4, 2005).
The cluster found that success was achieved through the use of explicit instructions that assisted the students to develop a positive attitude to learning. Breaking instructions down into small achievable steps also helped the learning process. Recognizing that individual approaches are required to meet boys' needs is also important. Finally, the use of role modelling and rehearsing positive behaviours was found to be more appropriate for some students than others.

Discussion

The absence of strong vocabulary skills and a tendency to communicate in a few words, rather than sentences, hinders progress in the development of literacy skills for students. The project found that using decodable text was an important breakthrough for teachers. An incidental finding was that the cluster believed that consistently listening to and discussing issues relating to students' well-being was important since "what may seem of little importance to the teacher may be of great importance to the student" (Cluster YCP4, 2005).

The boys too found aspects of the project worthwhile and one articulated that "if my mum wins lotto she is going to give you the money so I can keep coming to the programme". Parents comments such as “how can we access more funding?”, and “This has been a wonderful programme; why does it have to stop?” indicate the strong parental support for the programme (Cluster YCP4, 2005).

NEW TOWN CLUSTER

Project Background

This cluster of government schools comprised six primary schools, a boys High School, a Special School for students with disabilities, and a school that provides alternative and flexible programmes for students at-risk. The cluster schools varied in their student populations, from working class with a number of Indigenous students and significant numbers of refugee students, to homogeneous middle class enrolments.

The cluster aimed to provide a diverse range of programmes. Recognising the varying needs and interests of the partnership schools, the cluster devised a flexible programme drawing on four major strands of interest to promote best practice in the education of boys and develop teacher expertise. The four strands were Literacy, Leadership and Mentoring, Information & Communication Technology and the Arts.

This was one of the small number of projects in which the lead school operated as a Lighthouse by working with partner schools to implement practices that it had developed and evaluated over the previous three years.

The Project

The goals of the cluster were to increase boys’ achievement in Literacy, use student mentoring programmes as a strategy to improve boys’ educational outcomes, use ICT to promote thinking, and to engage boys in learning through music. Each cluster school chose to be involved with the strand they felt met the needs of their boys.

ICT

The project used the game programming software Klik and Play and GameMaker. The project also used IHMC CMap Tools for concept mapping. Teaching approaches needed to support these processes included: giving learners a ‘thinking vocabulary’, by giving explicit explanations of the types of thinking they will be doing; modelling processes involved;
providing hints and feedback; providing initial scaffolding, moving towards independence; and providing tools and support for learners to articulate their thinking strategies. The capacity of students to collaborate was a key requirement of this strategy — students either physically worked in groups of two or more at one computer, or used tools such as blogs, forums and concept maps to collaborate electronically in their work.

Literacy

The project focused on implementing explicit teaching of literacy strategies and frameworks to provide greater support for students’ learning. These approaches included giving students greater personal choice; an emphasis on authentic tasks and experiences; the use of appropriate technology; and using a diverse range of texts. Peer-tutoring for boys at-risk was also part of this strategy.

Mentoring

Two variations of this strategy were implemented. In the first, Year 9 and 10 students were given the opportunity to select the programme or were approached to join because of their suitability for the role. Students undertook a ‘mentoring-specific’ training programme to identify their responsibilities and understand their roles. After a successful probation period each participant was then required to sign a contract. The mentors worked one-on-one with students who were considered to have ‘special needs’ or who were considered to be at-risk in their primary years or the first years of their secondary schooling. The strategy operated on a ‘needs and withdrawal’ basis. Students were withdrawn from class to partake in specific activities in alternate learning environments. When it was determined that a student had progressed to a satisfactory level, they were re-admitted to their mainstream timetable with specific monitoring and ongoing review.

In the second mentoring strategy, students were withdrawn from nominated lessons to take part in specific activities in external work-based environments. The aim was that students would develop understanding and coping skills in non-classroom environments; develop greater understanding of ‘real life’ skills; determine and discover their value system; and develop strategies that would enable them to demonstrate improved interpersonal, work and social skills.

This strategy involved liaising with commerce and industry to find suitable work placements for a large number of boys; working closely with support services in determining ideal outcomes for boys not coping with mainstream education; developing alternative programmes; and liaising with community groups and services to better facilitate the needs of boys identified to be part of the programme.

Arts

The Arts strand involved three classes of students from each of three primary schools. Typically the class-work in music comprised a combination of instrumental playing, music theory work sheets and aural development. This also involved group work based on instrument type and whole class work. The thematic music texts chosen were *The Crazy Café* (Umanksy 1988); *The Three Ghosts* (Umanksy 1988); *The Gouls School* (Umanksy 1988); *The Dark Disco* (Umanksy 1988) and *The Wanderers* (Umanksy 1988). The teacher constructed a six week learning unit around the interpretations of the thematic music texts incorporating the Four Roles Resource Model (Luke & Freebody 1999) into the lessons. The unit explored the way society constructs the multiple meanings of music used in conveying horror as a focus for the thematic music texts.
Impact on Boys

In order to detect project impacts, the literacy test results of the boys who were in Year 7 in 2003 were compared with the results for the same boys two years later, in Year 9. Figure 19 shows that in 2003, the Grade 7 boys were achieving marginally better in literacy outcomes than boys in other schools with a comparable Educational Needs Index (ENI). By Year 9, the same boys had made gains against the boys at similar schools at both the lower and upper ends of the scale (Figure 20).

Survey data indicated that only small improvements in student motivation, engagement and well-being were associated with the mentoring, Arts, and ICT strategies. However, these were implemented for a short period and they may require a more prolonged period of implementation to have a discernable impact. Qualitative evidence from students and teachers indicates that there were positive affective impacts for at least some boys:

> Anecdotal evidence from both students and teachers shows that students were highly engaged, and keen to take their ICT projects home to continue working on them. (Cluster YCP4, 2005)

Use of ICT collaborative tools showed an increase as reported by both students and teachers. Online forums were enthusiastically used by students across all schools. Although all schools participated in concept mapping, technical issues prevented the use of online collaborative concept mapping in the primary schools, but it was successfully set up and continues in use at the High School.

Figure 19: Grade 7 Literacy Outcomes 2003

<table>
<thead>
<tr>
<th>New Town High Boys (Cumulative %)</th>
<th>State-wide Boys (Similar ENI) (Cumulative %)</th>
<th>State-wide Boys & Girls (Similar ENI) (Cumulative %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3 5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4 21</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>5 58</td>
<td>69</td>
<td>58</td>
</tr>
<tr>
<td>6 99</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>7 100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Office for Educational Review, September 2003. Levels of achievement in Column 1 are from lowest (1) to highest (7) on the literacy reporting scale

Figure 20: Grade 9 Essential Learnings Outcomes 2005

<table>
<thead>
<tr>
<th>New Town High Boys (Cumulative %)</th>
<th>State-wide Boys (Similar ENI) (Cumulative %)</th>
<th>State-wide Boys & Girls (Similar ENI) (Cumulative %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 12</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>4 80</td>
<td>86</td>
<td>83</td>
</tr>
<tr>
<td>5 100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Office for Educational Review, September 2003. Levels of achievement in Column 1 are from lowest to highest on the literacy reporting scale
What the Project Team Learnt

The BELS project enabled the schools to focus on the transition from primary to secondary school. The schools had been aware for some time of a performance dip during the transition to secondary schooling; the project provided them with an opportunity to develop a focus for ongoing work within the Cluster.

A key feature of the work within the BELS project was the “embedding of the strategies trialled within the curriculum” (Cluster YCP4, 2005). The teachers saw their expertise, skill and commitment enriched as a result of working together in practical and collaborative ways to achieve clearly defined educational outcomes.

The project enabled the schools to build upon, extend and involve other schools to a greater degree. It also provided teachers with an opportunity to evaluate progress and assess outcomes to a degree that would not otherwise have been possible. It allowed the mentoring and leadership aspect of boys' education to be explored and the experience of the project will influence the way the cluster will set up future programmes to engage boys in their learning.

The cluster believed that having separate managers for the four strands was very successful. The programmes operated independently, yet they were interdependent. The interdependence operated on several levels—support for each other in determining directions, a collaborative approach to setting goals and outcomes, a sharing of approaches, successes and pitfalls, and a collegial way of operating. The independence was necessary because the programmes had different modes of operation.

A key feature of the BELS project has been the embedding of the work within the curriculum. Although a number of ICT Mindtools were chosen for inclusion in the project, the most successful and enthusiastically embraced was computer game programming. The website containing support materials from this strand of the project is now located at http://www.mindtools.tased.edu.au

A number of implications for teacher professional learning emerged. Training in Mindtools was most successful when students and teachers learned together, rather than teachers alone. Sustained professional learning of an hour a week over four weeks was more successful than a one-day teacher workshop. This was because teachers could learn a small amount then go away to work with that knowledge, then build on it the following week.
CHAPTER 7

WHAT WORKS FOR BOYS?

This chapter considers the key lessons from the 51 cluster projects across the 351 schools involved in the Boys' Education Lighthouse Schools (BELS) project. Each of the clusters provided a series of staged reports as they progressed through their project and these have been the source of most of the information in this report.

Strategic lessons from the schools are discussed in the context of issues raised in the management and implementation of the project and the implications of the lessons learned for improving learning outcomes for boys in Australian schools.

A model of the factors that were found to be associated with successful cluster projects is developed as a way of integrating the lessons from the BELS project.

STRATEGIC LESSONS FOR SCHOOLS

Schools used a wide range of descriptions for the strategies that they developed and implemented for improving boys' learning outcomes. A plethora of descriptors were used to describe what were in many cases very similar strategies, suggesting a lack of coherence in understanding of both the field of boy's learning and of school performance and improvement frameworks. This points to the need to draw together the evidence about boy's learning and to make it available to teachers in a way that supports an enhanced discourse across the nation. Very few schools made any use of the report on practices in schools that preceded this project (Lingard et al., 2002), hence careful consideration needs to be given to strategies for disseminating such knowledge.

The literature currently available is generally not written with the needs of the practitioner in mind. The largest body of literature on boys' learning has been written for a research and policy audience. The language of much of this literature does not easily translate into the realities of everyday school life. It is also salient that the BELS projects in individual clusters rarely explicitly drew on the knowledge base that has been developed in fields such as school improvement, school development and school effectiveness, although it was evident that much of the discourse about the changes required to improve learning for boys in schools derives from this knowledge-base.

STRATEGIC INTERVENTIONS

A large proportion of the BELS cluster projects focused on specific sub-groups of boys, rather than the whole population of boys in the school. The specific sub-groups were in some cases the cohort at a specific year-level, or boys who had been identified as struggling with their learning, for example, in literacy, or boys who were disengaged from the mainstream of school life. Broadly, these sub-groups of boys can be referred to as either the 'disengaged' or the 'struggling' learners. In some, but not all schools, there was an overlap between these two groups of boys. There tended to be a high representation of boys from disadvantaged backgrounds in the group of struggling learners, however, the disengaged boys were drawn from across the socio-economic spectrum. A phrase that captured the issues for some boys was “cruising middle class and/or able boys doing just enough to get by”.

Both the disengaged and the struggling groups of boys generally saw little relevance in what they were doing at school to their future lives. A paradox is that the curriculum itself appears to be failing to provide the opportunity for these boys to learn the relevance of the content of the curriculum to their future lives.

PROFESSIONAL LEARNING

Although schools in the BELS project did manage to source a wide range of professional learning, many had to resort to using consultants who provide programmes that are based on knowledge that is not well supported by research. Most clusters spent a considerable proportion of their budget on professional learning activities, the most effective being those that integrated the professional learning activities into the process of developing their projects.

Boys’ education, along with a number of other aspects of Australian schooling, tends to be at the mercy of a shifting and faddish set of understandings and beliefs about how to improve learning outcomes for students. This was exemplified, for example, in one of the early planning meetings for clusters in the statement “we’ve done student learning styles”, as a way of dismissing the relevance of boys learning styles to their learning.

The current crop of ideas around ‘brain-based’ learning strategies generally have little foundation in the research literature that they purport to be based on. They are mostly based on a leap-of-faith that interprets findings from brain scans as having a specific relationship to thinking and understanding. However, we cannot tell from current neuroscience knowledge which brain waves are associated with a specific capital letter at the start of a sentence and the same capital letter at the start of a proper noun in the middle of a sentence. We do know some things, however. For example, the size of particular areas of the brain is not necessarily associated with ‘brain capacity’ in the relevant functional area. A common mistake is to interpret evidence of differences in brain size or electrical activity between males and females as indicating specific differences in mental capacities. Caution in interpreting such data is required, for example, there is good evidence that expert thinkers actually have fewer, not more, synaptic connections in certain areas of the brain than novice thinkers.

A significant reason for the vacuum in options available to schools in professional learning is the weakness of the infrastructure nationally for providing school-based professionals with access to knowledge based on sound research. University Faculties of Education and Teacher Training organisations were noticeable by their lack of presence as providers of professional learning for BELS clusters. Although university-based consultants did provide input to specific clusters, in most cases this was in the area of project development and evaluation, rather than in aspects of teaching and learning relevant to boys’ education.

The level of utilisation of the products of the research community in schools is very low (Cuttance, 2006). The current focus on enhancing research productivity in Australian universities is likely to exacerbate this situation as the utilisation of research by the practitioner community has little recognition in the research productivity framework.

TOWARDS AN INTEGRATED APPROACH TO SUPPORTING BOYS LEARNING AND DEVELOPMENT

Almost all BELS cluster projects adopted a multi-strategy approach to improving learning outcomes for boys. Key elements in these approaches involved a combination of strategies that sought to address specific aspects of pedagogy, engage boys through activity-based
learning projects, and often supported learning by either mentoring or role modelling strategies.

Cluster strategies that sought to improve the effectiveness of pedagogy were either implemented across the cohort of students at a specific stage of schooling, or were embedded into activity-based learning projects targeted at specific boys. Where they were implemented across the whole cohort, they generally were provided also for girls, and strategies that had a positive impact on boys’ learning mostly had a positive impact on learning for girls also. A good example of such a strategy was the Writing programme at Thornlands State School. This programme sought to enhance student skills in writing in Years 5–7. The programme was equally applicable to girls in the classes as it was to boys. The project improved the school’s performance on the Queensland Year 7 state-wide assessments by 18% for boys and 15% for girls, against a state-wide improvement of 9% for both boys and girls over the same period.

The Thornlands Cluster also implemented a student mentoring programme in which boys from Year 9 taught reading to Year 5 boys, and Year 6 boys read to boys in the early years of their schooling. The Writing programme addressed learning across all members of the cohort, whilst the mentoring component addressed the specific needs of individual boys.

Most activity-based learning in BELS involved out-of-classroom projects. A large number of the projects developed strategies that sought to incorporate physical activity into boys’ learning environments. In addition, many engaged boys by tapping into mechanical reasoning capacities — an area in which males have a general, although not large, advantage over females.

One of the significant lessons across projects is the impact that out-of-classroom projects had on the level of engagement for the target group of boys. Projects in which boys were required to engage in a process of applying for access to the programme, particularly through a staged process involving a written ‘expression of interest’ followed by an interview, and ultimately, if they received an offer of a place, a contract to sign, created strong commitment from the boys that entered the programme. Two factors are in play in this process: first, the process provided an authentic parallel to the relevant real world activity of applying for a job; and second, it provided an opportunity to scaffold the process of developing motivation and engagement in learning — via the application, selection, and contract process.

The activity-based projects sought to develop a learning environment in which basic skills such as writing, reading and numeracy provided the required underlying working knowledge — for example, students wrote letters to external organisations to obtain supplies of materials or to offer their services, and students searched the Internet for and then read workshop manuals.

Many projects required boys to work together, often with an adult male. These projects provided an authentic environment in which boys learnt that specific behaviours and rules had to be followed (some environments would otherwise have exposed boys to danger, such as danger of injury by misuse of tools), required collaboration to undertake joint work, and provided many opportunities to develop persistence and resilience by pushing boys beyond their normal emotional limits in a secure environment. They also afforded a much higher level of adult-student interaction than that available in normal classrooms.

Out-of-class activity-based learning programmes were, in most cases, explicitly based around engaging boys in activities such as building shelters, repairing and reconditioning equipment (bicycles, motors, etc) and constructing mechanical and electronic devices (eg. go-carts and robots) or programmes that sought to jointly address and integrate physical activity with emotional and attitudinal development. The latter programmes involved
challenging outdoor activities, such as camping excursions that incorporated strategies to develop emotional resilience.

These findings about out-of-classroom activity-based projects raise the question of which factors are responsible for their impact, and whether they are generalisable to other contexts. The main knowledge base available to address these issues is the research that has focused on the efficacy of Adventure Education. Research has indicated that adventure programmes have a significant impact on a range of cognitive and affective aspects of learning relevant to the development of boys. While only a small number of the BELS projects reached the intensity or included some of the key elements that are common features of adventure programmes—mentally and/or physically challenging objectives, frequent and intense interactions involving problem solving and decision making—they did include other features, such as, a small group focus, non-intrusive leaders/supervisors, and “doing physically active things away from the...normal environment (Hattie et al, 1997).

A third variation of this strand of strategies focused on boys engaging in physical performance through dance, drama, and music. A critical element of this variation was the incorporation of public performance, which provided opportunities to recognise the achievement of the boys involved. These performances were to a wide range of audiences, including the boys’ school peers, parents, and the public at shopping centres, etc. Public recognition of the output of work undertaken by struggling and disengaged boys has the potential to impact positively on each boy’s sense of self-worth and self-esteem, a vital ingredient in the motivation required to learn in challenging contexts.

In a small number of cases, teachers sought to develop classroom programmes that involved a higher level of physical activity. An example of the latter was the programme developed for an all-boys Year 5 class at Bribie Island State School. The learning programme in this case was built around four learning centres within the classroom, with students rotating around the learning centres every half hour or so.

The projects that implemented classroom strategies to enhance teaching and learning for boys sought to provide a more structured environment for learning in the area of literacy, in particular, and in the development and implementation of behaviour management programmes. Most schools tackled issues of engagement indirectly, by seeking to improve the quality of teaching and of the learning environment. They took more notice of the interests of boys and identified and directly addressed their specific needs, for example, by recognising that individual boys had not acquired the foundational literacy knowledge necessary to understand the relationship between a picture and the caption below the picture. They also developed collaborative projects for boys to work on, often with adult males. Further, they sought to expand the repertoire of teaching and learning strategies used in the classroom, for example, by encouraging boys to build models, or present their understanding in a multi-media format.

In some clusters, they also sought to reassess the boundaries placed on students in terms of what is classified as acceptable behaviour and what is classified as misbehaviour. This issue is particularly important for students in the secondary years as many of them have part-time work outside of school and/or operate in a more adult oriented environment when not at school.

There was clear evidence in a number of projects that, students who previously viewed themselves as failures were able to develop a sense of greater self-esteem and self-reliance as a result of activity-based learning projects. Further, a number of the projects were able to demonstrate much higher levels of engagement by boys in school leadership activities and in school awards programmes by giving consideration to the factors that often impede boys' engagement in such activities.
The strategies implemented for the two different types of boys involved in the projects — struggling boys and disengaged boys — were often highly differentiated. Programmes that sought to address the needs of struggling boys directly recognised that they were novice learners in a particular aspect of their learning and that they may have poorly developed understanding of how to learn. Hence, these projects embedded a high level of structure in their learning environment and focused on the fundamental skills and knowledge required for reading and writing, in particular. In many cases, these projects incorporated additional strategies within normal classrooms, but often supplemented this with one-to-one remedial tutoring and boy-to-boy mentoring.

Strategies developed to re-engage boys through activity-based projects engaged a small group of boys with a supervising adult, either a teacher or volunteer. Although, this involved the male adult providing knowledge to the boys, hence, contained elements of mentoring, there was a substantial element of role modelling, enacted through supervision and the development of an environment in which boys could learn to work in a male environment.

Many such projects involved some volunteer support from males in the local community. The role of the adult males in these situations included:

- supporting a boy to undertake a project;
- working with a group of boys to achieve a group outcome, for example, building a motorised buggy, or carpentry projects;
- working with boys to repair bicycles and small motors;
- supervising boys on outdoor expeditions;
- creating a male environment to support engagement with older males;
- teaching boys performance skills, for example, in dance, drama, voice and music; and
- providing an opportunity for boys’ to connect to their community by learning cultural and social history from elders. (Cuttance, 2006)

CONSOLIDATING THE STRATEGIES

Three sets of practices were successful across a number of projects (Cuttance, 2006). The first is activity-based learning, in which students focused on literacy, behaviour and social outcomes through hands-on ‘workshop’ programmes with links to the real-world. The most successful of these involved community and industry collaboration that provided an opportunity for boys to gain a taste-of-real-life. Another successful variation of activity-based learning was programmes that engaged boys in outdoor/adventure learning programmes. These programmes focused on developing resilience, self-esteem and collaboration in a context of physical exertion and engagement in relationships with adult males.

The second set of practices included variations of mentoring and role modelling. The mentoring projects focused on boy-to-boy mentoring, in which secondary boys taught upper primary boys to read, or upper primary boys engaged with lower primary boys by reading to them. Role modelling was involved in a number of projects in different contexts, but generally involved older males (most retired) engaging with boys of different ages in one of two contexts. The first context was one in which the boys and the role model engaged formally with each other in workplace type activities or adventure learning programmes, and the second involved creating a male environment for boys to engage informally with adult males watching events, engaging in sport and other activities involving physical activity, such as dance and other forms of public performance.

The projects that involved role modelling, in most cases, involved boys working with adult males on a specific project, such as repairing bicycles, dismantling and repairing engines,
rebuilding or constructing buildings of some type. In these cases the projects normally engaged more than one, but no more than a dozen—often many fewer—boys working with the adult male.

A variation to the role modelling strategy involved activities where schools invited boys to bring an older male to school on a regular basis. The boys and the adult males then engaged in a range of activities in a male-constructed learning environment for the boys. An outcome of these projects was an enhanced desire on the part of the boys to engage to a greater extent with male adults, particularly, their father or another significant adult male in their life. A variation to this was older men reading to or sharing stories of their own boyhood with boys in the primary years — an oral tradition that is much less in evidence than it was several decades ago, partly because a significant number of boys today do not have a meaningful significant adult male in their lives. As a result, they grow up with few opportunities to learn how to interact in male environments.

The mentoring projects provided opportunities for the older boy to engage in caring for the younger boy and to become the focus of respect for the younger boy. There was evidence in some projects that older boys who were otherwise disengaged from schooling were the ones who were most likely to engage actively in this process. Such boys probably do not receive the same level of constructive and positive feedback for their achievements as other boys in the classroom who are achieving at higher levels, and the mentoring context may have been fulfilling an otherwise unmet need for these boys. The formation of strong interpersonal emotional bonds was evident between the older and younger boys in many mentoring projects.

Critical to the success of these mentoring strategies was detailed planning and training to ensure that both the older and younger boy fully understood their roles, and to ensure that they received the appropriate training and scaffolding to learn how to engage in the experience. Experience across the projects indicated that an age difference of four to six years was appropriate to ensure that the two boys were able to establish an appropriate *modus operandi* that maintained their different roles. This age differential provided an environment that supported the separate roles, but at the same time allowed the boys to meet on common ground in terms of sharing experiences. It was critical that a purposeful learning environment was established and maintained, as opposed to a ‘buddy’ or play environment.

The third set of practices sought to enhance the learning environment in normal classrooms. The largest group of such strategies focused on improving literacy outcomes for boys in the primary years. These programmes developed more effective and more demanding writing programmes, implemented more effective teaching and learning practices, and focused on the interests of boys as part of the learning environment. Boys were given the opportunity to access and read books that were of interest and encouraged to read magazines and other literature in addition to story books.

Before proposing an integrated model for supporting boys’ learning in the next section, a consolidated statement of strategies is provided below. As noted earlier, strategies that were essentially similar were described with a plethora of descriptors, indicating the lack of a coherent model of how to address salient issues in boys’ education.

Most of the cluster projects involved a high level of integration of strategies across the various areas of boys’ needs. The Thornlands cluster project in the southern outskirts of Brisbane provided an example of such integration. The cluster developed a set of strategies in each of the following areas:

- social skills;
- mentoring;
These key areas of strategic development were targeted towards improvement in the following five areas.

STUDENT ENGAGEMENT
- daily purposeful writing
- emphasising fun & humour in poetry
- clear objectives
- clear limits and set lengths for writing
- short tasks, such as five-minute writing exercises
- learning to take risks with ideas
- modelling good writing
- sharing published writing

STUDENT LEARNING SKILLS
- breaking tasks into smaller pieces
- use of graphic organisers
- incorporating graphics into published work
- personal writing records
- learning to rework own writing

STUDENT SELF-ESTEEM & SELF-CONFIDENCE
- weekly school student/staff presentations and discussions of writing at assembly
- awards to recognise quality writing
- friendly, inter-class competition
- recognition of class and individual effort
- publication of class writing books and poetry collections
- celebration of achievements

TEACHING SKILLS
- constructive feedback to students on their writing skills development
- active, orally-based teaching style
- explicit teaching of writing skills
- development of a teacher toolkit of writing strategies
- workshops by visiting children’s authors
- weekly monitoring of student progress and feedback to class teachers by school leaders
- written feedback and discussion at year-level teacher meetings

Figure 21 below enumerates a range of the types of practices that were associated with the improvement of learning outcomes for boys. The data highlights a key issue in the development of strategies for enhancing the learning environment for boys. The classroom-based practices for improving learning directly target specific literacy skills and knowledge. However, practices that are located outside of normal classrooms are likely to tackle the
improvement of boys learning more indirectly — for example, improving boys engagement and behaviour is achieved not by targeting specific skills or knowledge, but by providing a more relevant and interesting context for learning, that is, the out-of-classroom practices were able to adapt more specifically to the needs of boys, and provided them with much higher levels of scaffolding in their learning, through mentoring, role modelling and tutoring.
Figure 21: Types of Practices Associated with Improvement in learning for Boys

Classroom Pedagogy

Literacy — Reading

Small group activities — including guided reading of texts with a strong phonetic focus; spelling activities related to the phonetic pattern; re-reading of previously studied texts, and revision of phonetic patterns and spelling of non-phonetic high frequency words.

Book Swap Club — designed to determine whether boys are motivated to read when they are in a community that promotes reading. Boys meet on a regular basis to share and discuss what they read.

Literature Circles — boys chose their own reading material and took on specific roles — clarifier, illustrator, questioner, predictor, connector, and summariser.

Learning to Read — Reading to Learn — used scaffolding for teachers to interact with students around text.

Billy Bear Diary Project — students took turns at taking a literacy backpack home for a weekend. The backpack contained a teddy bear, a digital camera and a class contract. Students took photos and shared their weekend with their classmates upon return to school.

Learning the sounds of the alphabet —

Activity-Based Learning

Assembling and dismantling small motors, finding faults, ordering parts, carrying out repairs, maintaining tools and working from manuals.

Reading repair manuals and microfiche diagrams of motors, etc.

Reading magazines and catalogues to choose from alternative items to be built.

Learning specific vocabulary and mathematical concepts working on sail boats, transmitting distress signals, and using global positioning systems.

Mentoring/Role Modelling

Year 4 boys partnered with a mentor from Year 11. The mentors were trained to develop questioning techniques to test comprehension of the younger boys.

Year 6 boys who needed reading practice, read to Prep boys for half an hour every day — the older boys were trained to use appropriate strategies to engage younger boys in the story.

Year 9 mentors managed a graded reading programme for underachieving Year 5 boys.

Older boys assessed the progress (running records) of the younger boy and discussed advancing the younger boy to the next reading grade with their teacher.
students took home a digital camera and photographed items beginning with the focus letters. Photographs were then formatted on the computer and a song developed around the focus letters using a music software programme. Students then practised the song to learn the focus letters. A slide show was made of the collected images and classroom footage of the students working on the song. The song was then incorporated into the slide show as a presentation.

Literacy — Writing

Phono-linguistic approach to writing — using segmenting, blending and deletion skills. Individual whiteboards were used to encourage students to put ‘pen to paper’.

Teaching of grammar — strategies such as sentence cut-ups and *think alouds* and the explicit use of grammar.

Reading and visual presentation of text — integrated use of two forms of text — film and novel. Two classes studied the film *Of Mice and Men* as text and two classes read the novel as text.

Use of a visual organiser to plan narrative piece, using story book to enhance presentation skills; use of computer voiceover for story-telling; use of digital camera and digital photos to illustrate story.

Horticultural project — focusing on: instructional writing: “*How to make an organic vegetable garden*”; informative writing: “*The lifecycle of a Plant*”; and creative writing: “*My life as a Beetle*”.

Writing implemented through a robotics project that integrated hands-on activities with electronic messaging, use of instruction manuals, procedural and reflective writing.

Using laptop to document bike repair project — integration of text and visual material for presentation to others.

Drafting price quotations for commissioned work. Reading client requests and replying by letter.

Reading and documenting plans for the construction of items.

Children’s authors engaged as part of a creative writing programme.

Grand dads ‘yarning’ to young boys about their own life as a boy — used as a stimulus to document local history by writing books and creating multi-media presentations.

Creating web-pages to document and promote events such as a visual arts show of photos taken and documented.

Using Think.com or emails to communicate with another class in the school or in another country.

Dads as mentors to students in a hands-on project restoring a hut for the local military museum.
Code switching — translating Aussie slang into standard Australian English and being recorded whilst reciting two pieces of writing.

Implementation a programme where students learn to listen to the sounds in speech and record words sound-by-sound.

The three key phonemic awareness skills, blending, segmenting and phoneme manipulation, formed the basis of lesson planning.

SEER (Signpost, Evaluate, Evidence, Relate) — students were asked to write a ‘Recount’; a scaffolding technique was then taught and followed by another Recount'.

Using drama to improve student engagement in literacy learning.

Writing to suppliers of equipment and parts to build a motorised buggy.

Community project “If the walls could talk” — boys wrote a play and songs to document Bendigo's goldfields history to the other schools in the cluster.

Refurbishing a disused room as a literacy centre. Building tasks included floor supports, raising floor, floor covering, door and window installation, and paint finishing. Tasks included specification and estimations of building materials, ordering of materials, updating floor plans for school records, following school and Occupational Health and Safety procedures, including a video recording of the project and publicity and marketing.

Behaviour

ICT Mindtools and programming software to make games, such as Klik & Play, and GameMaker; and IHMC CMap Tools for concept mapping. Also included collaborative and reflective tools.

Motivating boys through: structured teaching; positive reinforcement and rewards; differentiated and inclusive curriculum; cooperative learning; and team teaching.

Social stories were used to explain and

Year 11 mentors assisted Year 8 boys with painting and drawing, helped younger boys to select suitable sites to photograph and encouraged them to choreograph their own steps in the movement class.

Rock and Water programme linked physical exercises with mental and social skills. Topics covered include: intuition; body language; mental strength; empathic feelings; positive thinking and visualising; and discussion of bullying, sexual harassment, and
illustrate a situation that required an appropriate response from students.

Co-operative learning to build mousetrap racers.

Explicit teaching, modelling and opportunities for students to learn and practice conflict resolution, self-management, and communication skills using the Tribes approach and Friendly Kids, Friendly Classrooms.

Engagement

ePortfolios created for transition purposes to show student’s learning to their future Year 7 teacher.

Robotics — problem solving, taking risks, being physically active and engaging in socially collaborative contexts.

Single-sex classes for boys with increased structure in lessons; informing students of the activities they will complete; increased use of modelling in the classroom; breaking down of lessons into smaller, quicker activities; and specific activities on specific days. Three strategies were trialled:
- highly specific, individualised goal setting in the areas of organisation, behaviour, literacy, numeracy, confidence and persistence;
- an incentive system to encourage organisation and observance of classroom rules; and
- Individually, or in groups of two to four, targeted boys undertook a task that involved creating a finished product in one particular area. The main areas were mechanical/automotive, computing, creative arts, performance and outdoor improvement.

Community-building project — Year 8 boys worked on building jobs which included design, planning, estimating, quoting, ordering materials and following school and OH&S procedures. The boys also promoted and marketed their business through a website and advertised locally. Students, teachers, administrators and the external community worked together in an online simulated economy.

Robotics with a focus on problem solving, taking risks, being physically active and engaging in social collaborative contexts undertaken with male community members.

Year 9 mentors assisted primary school students with literacy.

Pairs of Year 6 and Year 10 boys engaged in hands-on reconditioning of push bikes under the tutelage, supervision and guidance of retired men from the local community.

homophobia.
• processes to focus on choice, by using matrices from which students chose tasks to complete.

Enhancing school connectedness and engagement — students worked in small groups of 6-8 with the same teacher leading most sessions, hands-on learning experiences to boost self-esteem and foster skills of cooperation, teamwork and persistence. Workshop sessions included baking, craft and woodwork, with an emphasis on developing teacher-student relationships.
AN INTEGRATED APPROACH

The overall findings from the BELS project can be brought together in the context of the key findings from educational and related research. Figure 22 (a-d) below provides four sequential overlays of the environment of the school, the learning environment and critical external strategies that BELS schools demonstrated were effective in improving learning for struggling and disengaged boys.

Figure 22a: The Base Elements of a Model for Supporting Boys’ Learning

The first of the four frames (Figure 22a) indicates the lessons for structuring and creating effective school, social and learning environments for boys.

Such environments include:

- *high expectations* for student’s to take *responsibility* for their own actions;
- opportunities for boys to engage in a sufficient level of *regulated physical activity*;
- clear playground *rules* and *behavioural boundaries*—but with some flexibility—*engaging all students* in the formulation of the expected rules and norms of behaviour, including agreement about latitude to be provided and the discipline to be effected in cases where the rules are transgressed; and
- *engaging with the community*, including employers, so that boys of all ages can develop a grounded perspective of their potential futures, and through this to understand the *relevance* of schooling. (Cuttance, 2006)

The second frame (Figure 22b) provides an overlay of effective pedagogical approaches, including a core of the following practices:

- *classroom rules* that create boundaries of acceptable behaviour and incorporate some *physical activity in the learning environment*;
- appropriate *scaffolding of learning*, with high levels of scaffolding for students with underdeveloped learning skills and those below expected levels in the acquisition of specific knowledge; and reduced levels of structure in contexts where students can benefit from it;
- leveraging boys’ *spatial and mechanical abilities* by providing opportunities to engage them in learning — for example, by allowing them to build models to demonstrate what they know; and
- classroom learning environments that are *less dependent on language skills*, particularly the written word, as their primary medium of communication through the use of ICT and multi-media technologies and alternative types of assessment, such as building models. (Cuttance, 2006)

Figure 22b: The Pedagogy Elements of a Model for Supporting Boys’ Learning

![Diagram](image)

The third frame (Figure 22c) provides an overlay of activity-based learning for boys who are not fully catered for in the standard classroom learning environment. Such environments need to provide opportunities for boys to:
- learn about relationships in *male orientated contexts*;
- engage in *hands-on learning*;
- engage in learning skills and knowledge that are *relevant to each boys’ future*;
- engage in learning in *workplace contexts* that integrate literacy activities and appropriate behavioural rules — many boys are prepared to accept *tighter discipline* in such environments, particularly, if they can understand the reasons for it, eg. workplace safety when using tools; and
- learn cognitive and affective skills and understandings to *build resilience and self-esteem* (Cuttance, 2006).
Structured & regulated physical activity
Clear playground rules/boundaries
Increased level of student responsibility
Enhanced relevance through engagement of the community

SCHOOL SOCIAL AND LEARNING ENVIRONMENT

PEDAGOGY

Revised classroom rules/boundaries
Appropriate scaffolding of learning
Utilise boys spatial/mechanical abilities

Male environments
Hands-on learning
Activities with relevance to the future
A workplace orientation
Building resilience & self-esteem
Male role models
Focus on literacy and behaviour

ACTIVITY-BASED LEARNING

LEARNING ABOUT RELATIONSHIPS
LEARNING ABOUT APPROPRIATE BEHAVIOURS ENGAGING IN LEARNING

ADULT-TO-BOY ROLE MODELLING

Source: Cuttance (2006). What do we know about boys' Australasian Boys' Education Network.

Figure 22d: The Mentoring & Role-Modelling Elements of a Model for Supporting Boys’ Learning

The fourth frame (Figure 22d) adds an overlay of additional external components to the learning environment. The broader school environment, the classroom environment, and activity-based learning — can be further enhanced through the use of adult-to-boy role modelling strategies and boy-to-boy mentoring strategies. These strategies are effective when they provide:

- opportunities for boys to develop mutual respect and caring for each other through boy-to-boy mentoring;
- appropriate male role models so that boys can learn about rules for working together, which may involve the supervision of boys by the role model as a co-worker;
opportunities for boys to learn about *relationships* in contexts where they are required to engage with adult males;

- social environments for boys to learn about *appropriate behaviour in a male environment*; and

- a structure of expectations and norms that support boys to *engage in learning*.

DISCUSSION

The BELS projects have substantially added to the knowledge-base for the boys who are ‘struggling’ with their schooling or are otherwise disengaged capable boys who are putting just sufficient effort to get over the hurdles — the challenge is to build this knowledge into the everyday practices of schools and classrooms. In most cases, the BELS projects provided an opportunity for boys to engage in the project for up to half a day a week in a context that integrated core elements of their main programme—literacy and behavioural development, in particular.

It is not necessary that all aspects of the above model of support for boys learning be incorporated into all aspects of boys learning environments. A large proportion of boys thrive in normal school learning environments—although most environments will be even more productive if they include strategies embedded in the model.

It is critical that the lessons from the BELS project be interpreted in the context of the broader research knowledge about differences in learning between boys and girls. Contrary to popular belief, there is no broad evidence that boys are substantially poorer readers than girls. The main area of difference in literacy achievements between boys and girls is in writing, rather than reading.

A set of surveys have been developed to audit each of the frames of the model above. Separate surveys are available for students, teachers and parents and can be accessed online at www.radii.org/hermes.

The BELS projects clearly indicate that students who are ‘disengaged’ in their normal classrooms can be intensely engaged in learning environments that have different boundaries for behaviour, expectations, feedback, rewards and relevance to their perceived futures. Further, the success of the BELS projects that developed activity–based learning environments for specific groups of boys indicates that normal classroom learning environments need to be supplemented by external activities for some boys’, and for that matter for some girls, also.

BELS schools were correct to target specific sub-groups of boys as the focus of their projects. Not all boys are performing badly, indeed most are achieving at levels equivalent to most girls. It is important that this message be disseminated as we currently run the risk of boys, teachers and parents believing that boys are not learning as well as girls and indeed, that perhaps they cannot learn as well as girls.

It is salient to reflect on the findings from the international literature, and New Zealand and Australian educational studies. First, in terms of education, gender differentials of any significance are not the prevailing reality, rather gender differentials appear to be specific to aspects of cognitive skills and to particular areas of the curriculum. Further, the most significant gender differences are in non-cognitive areas — physical strength, aggression and levels of physical activity. Environments for learning will be more accommodating for boys if they explicitly recognise these differences between males.
and females. This information from international studies of gender differentials provides some pointers that can be used to inform educational practice and a context by reflecting on changes in schooling over the last half century.

First, curriculum and examination systems have generally become more language focused (Rowe, 2002). Second, school playgrounds have been systematically cleared of all equipment and other objects that allow substantial levels of physical exertion — particularly, anything a child might have the disposition to climb. Third, there has been a systematic shift in policy away from organised contact sports during school hours. Straw polls taken during the BELS project visits to clusters of schools suggest that less than a quarter of all primary schools now provide organised and supervised sports opportunities at play-break, lunch time or after school. Fourth, the behaviour rules and disciplinary structures of schools have over a long period of time moved towards favouring non-physical engagement and ‘cooling out’ all forms of aggression—including most components of competitive behaviour. Schools have also developed a ‘thou shalt not physically interact with other students’ culture in terms of the rules and expectations of what is permissible and what is not permissible at school. There are sound reasons for many of these developments, although few, if any, of the reasons make sense in terms of supporting learning and the development of young people. Most often cited by schools is the necessity of removing ‘risks’ to reduce the possibility of litigation in cases where a child is injured or molested.

The boundaries that are set for acceptable behaviour in schools define what is misbehaviour — in many schools acceptable behaviour excludes physical contact in the classroom. During lunch hours and breaks, students are expected to engage in largely passive—or at least non-contact—activities. Students who engage in physically active games do so mostly without direct supervision, as for example would be exercised by a ‘referee’ — in such contexts some students are unwilling to take part because of the enhanced risk of being hurt or injured. A key role of a referee in enforcing the rules in organised games is to provide the controls and regulation necessary for safe play.

On average, males are about 25% heavier than females. Assuming that males have a higher calorific intake in line with their greater mass, a higher level of physical activity is a necessity for males, compared to females, if they are to maintain equilibrium in terms of their body mass. International research confirms that males are on average considerably more physically active than females (ABS, 2004; Eaton & Enns, 1986; Eaton & Wu, 1989), which indicates that there should be an expectation of a higher level of physical activity from boys, compared to girls, in schools. It is probable that this difference is the result of a mix of environmental, social and biological factors. However, regardless of the reasons for the difference, if boys do not have the opportunity for the required level of activity, they are likely to have a heightened risk of health problems associated with obesity, be more ‘restless’, and less engaged.

Recent European research indicates that the equivalent of one-and-a-half hours of moderate activity daily is required to reduce cardiovascular risk factors to an acceptable level in children (Andersen et al, 2006). The average child sleeps or rests for about 12 hours a day, sits passively in a classroom for another four hours and spends 1–2 hours eating, leaving only six hours in which to engage in physical activity. If they spend one hour travelling to and from school — more often than not, using transport that displaces an opportunity to be physically active — and then watch television for 3–5 hours, it is evident that it is necessary to restructure opportunities for physical activity. Clearly, there is a need to consider how school environments might be reengineered to provide
opportunities for both boys and girls to engage in the necessary level and intensity of physical activity during the day.

The most successful of the BELS projects exhibited a clear set of characteristics (Cuttance, 2006). Complex multi-strategy projects had the most success — although this must not be interpreted as equating to a large number of strategies. The key to setting the grounds for success was an integrated set of strategies that complemented and supported each other. In many cases these built on promising strategies that the school was already implementing. However, projects that simply used their BELS funds to support a wide range of existing projects were generally not successful in demonstrating a substantial impact for boys. Two factors reduced the potential for success of the latter projects: a lack of integration and synergy across disparate strategies; and insufficient resources due to the available resources being spread too thin to make a difference for the targeted group of boys.

One factor in relation to the latter is that by focusing on small groups of boys, schools were able to provide a level of resourcing per student that was sufficient to achieve an impact on outcomes. If, instead, these projects had focused on all boys in the school, it is unlikely that the project would have impacted on the sub-group of boys who were struggling, and the impact on all boys would have been small. This is simply a consequence of the necessity to move above a threshold level of resource intensity if significant gains are to be made by students who are in the lower tail of the outcomes distribution.

In addition, the educational research literature clearly identifies practices that set challenging goals and provide critical feedback to a student’s learning as the most powerful practice that can be used to improve learning outcomes (Hattie, 1987, 1999). A major dimension of the potential benefits of a high level of resource intensity, therefore, can be realised when the amount of time allocated to these two instructional practices is substantially increased, as it can be when the learning environment is focused on a small number of students.

The concept of activity-based learning that has emerged from the BELS project could benefit from further exploration about how to make it even more effective, particularly for boys who are struggling with their learning or disengaged from schooling. The adventure education and the work experience literature provide two starting points for this further inquiry.

Overall, the practical lessons from BELS are as follows:

- the clearest overall impact was on boys’ behaviour;
- projects that were able to clearly articulate their strategies had the greatest impact — clusters that undertook a trial as part of the planning and development of their project used this as a way of clarifying how specific strategies may work in practice;
- projects that had a primary focus on professional learning had minimal impact — professional learning has an impact only if it is translated into changed practice; and
- the most successful projects focused on specific small groups of boys.

Factors that impeded projects included:

- the failure to turn professional learning into changed practice;
- mobility of teachers and principals who were the drivers of the project—a factor that is of much greater significance and prevalence than generally acknowledged—there
was evidence that some schools were in a constant state of disequilibrium and flux as a result of staff movement;
 - difficulties of collaborating across schools, particularly when timetabling issues arose;
 - a lack of efficient processes to collect and analyse evidence and a lack of the required skills and knowledge to make sense of data — this was true of all forms of evidence, including learning outcomes data;
 - over-reliance on informal (“I reckon”) teacher assessments of impact, without direct supporting evidence from students—teachers were more likely to claim a higher level of success for their projects than was warranted by the evidence from more rigorous data gathering and analysis strategies;
 - a cargo-cult mentality and an unwillingness to accept standard accountability processes by a small number of schools;
 - a lack of facilities to accommodate activity-based learning at school; and
 - the issue of implementing an externally funded project when the timeline is not synchronised with the cycle of planning activities in schools.

The BELS projects have substantially added to the knowledge-base for boys who are struggling with their schooling or are otherwise disengaged but capable boys who are putting just sufficient effort to get over the hurdles — the challenge now is to build this knowledge into the everyday practices of schools and classrooms.
CHAPTER 8

ORGANISATIONAL FRAMEWORK
FOR THE BELS PROJECT

The Project Director was Professor Peter Cuttance. At the national level, the project was managed by Dr Greg Neal (Network Project Manager, until Dec 2004), Dr Elizabeth Hartnell-Young (Network Project Manager, from Jan 2005), Dr Wes Imms (Research Manager), Dr Jean Thompson (Research Fellow), Dr Sally Godhino (Co-ordination), Ms Keryn McGuinness (Quality Assurance), Ms Shauna Beard (MUP Project Officer), Mr Tim Jones (External Relations) and Ms Cheryl Umoh (Administration). Dr Imms, Dr Godhino and Ms McGuinness were engaged on fractional appointments (0.2–0.4 FTE).

The Nodes of the BELS Network each operated as sub-contractors to Melbourne University Private under their Head Contract with DEST. Melbourne University Private managed all financial arrangements for the project.

Each Network Node comprised a Node Manager plus a number of Cluster Consultants, whose responsibilities were to provide the interface between the NPMT and each cluster of schools. Node Managers were:

WA Dr Wayne Martino and Dr Wendy Cumming-Potvin
SA Mr John Wilmshurst
VIC Dr Sally Godinho
TAS Professor Ros Arnold (later Dr Wes Imms)
NSW Professor Toni Downes
QLD Dr Jon Austin

Cluster Consultants were:

Professor Peter Cuttance Dr Patrick O’Brien
Mr John Wilmshurst Dr. Wendy Cumming-Potvin
Mr Leigh Marsland Mr Richard Sallis
Dr Geoff Munns Dr Filocha Haslam
Ms Christine Bottrell Dr Judith MacCallum
Ms Mary-Anne Fleming Dr Tim McDonald
Dr Wes Imms Ms Robyn English
Dr Susanne Gannon Mr Mark Tyler
Associate Professor Peter Albion Ms Janet Fellowes
Dr Patrick O’Brien Ms Lesley Fitzpatrick
Mr Lee Wharton Dr Jon Austin
Ms Helen Woodward Ms Anne Cloonan
Ms Sonya MacKenzie Ms Jacintha Francis
Dr Affrica Taylor Ms Kate Castine
Associate Professor Julianne Moss Dr Jean Thompson
The responsibilities of Cluster Consultants’ included:
- providing ongoing assistance to the cluster schools through visits, teleconferences and by sourcing resources as required;
- auditing and reviewing the progress of each Lighthouse School;
- providing advice to the cluster on how to overcome problems that inhibit their progress; and
- supporting the cluster to use the four-stage planning and reporting process.

The designated leader of each cluster was generally drawn from the senior leadership team of one of the schools in the cluster. It was expected that each school in the cluster would designate an experienced educator as the co-ordinator of the school’s engagement in and implementation of the cluster project. The Co-ordinator was responsible for their school’s plan and for reporting against the 4-stage Your School Project framework (described below) throughout the project.

The Executive Management Group comprised the NPMT plus the Network Node Managers, and met as required (mainly in sub-groups by teleconference) to discuss matters, review management issues and work through the timeline for the enhancement and performance of BELS Projects.

The Project Advisory Committee (PAC) met four times during the project. Members of the PAC were:

Professor Peter Cuttance (Chair)
Ms Rosemary McLoughlin (National Catholic Education Commission)
Mr Bill Toppin (Independent Schools Council of Australia)
Mr Les Smith (Australian Council of State School Organisations)
Mr Paul Dickie (Australian Parents Council)
Mr Roderick Crouch (Australian Primary Principals Association)
Dr Ken Rowe (Australian Council for Educational Research)
Mr Terry Woolley (Australian Education Systems Officials Committee)
Mr Andrew Blair (Australian Secondary Principals Association)
Professor Nola Alloway (James Cook University)
Ms Belinda Tyrrell (DEST)
Mr Errol Bannister (DEST)
Mr Giancarlo Savaris (DEST).
AN EVIDENCE-BASED LEARNING FRAMEWORK

The BELS Project framework was based on a participatory form of professional development that valued data collection and reflection and assisted teachers to undertake their own research through treating their ideas, theories, practices and work settings as important areas for analysis. The project also used Fullan’s (1991) concept of pressure and support, whereby high expectations for school improvement and innovation were translated into user-friendly tools and resources. Teachers in BELS projects were practitioners and co-researchers, in partnership with academic consultants, and together with the support of the NPMT, were able to develop broad and wide-ranging cluster projects. In addition, from its outset the BELS project developed a strong evidence base, with resources collected over time by the NPMT, and made available via the National Quality Schooling Framework (NQSF) website.

A crucial concern for each cluster at the commencement of the project was the requirement to develop each project based on sound evidence. There were four components to using evidence in the projects.

- Evidence from prior projects was used by schools to guide the implementation of their BELS project. For example, one cluster in New South Wales already had a highly successful boys programme in place. Much of this programme focused on raising boys’ self-concept by valuing who they were and the skills they possessed. This programme was further developed to embed the objectives of BELS in a more sustained and systematic manner within the formal school curriculum.

- Schools utilised data they routinely collected, such as attendance and learning assessment data to determine the most relevant focus for their project.

- Teachers accessed literature from the Resources area on the NQSF website. The NQSF website has since been decommissioned, however all the resources from the site will be available on the Success for Boys website at: http://www.successforboys.edu.au/boys/

The resources will also be available at: www.radii.org. Over 200 items relevant to boys’ education were provided on the NQSF site, including journal articles, school reports, and web links to other sites. Whilst not used extensively by all clusters, some found it very useful:

The NQSF website, particularly the resources section, has also been extremely valuable in assisting us with packages to make full use of our network within the Cluster to support each other in the development of our individual schools, working together to create greater outcomes for all of our students. (Palmerston North Cluster Cluster, YCP4 2004)

Teachers built on the knowledge they had gained from experience in seeking to address issues for specific boys. Teachers used tacit knowledge to frame their research projects. For example, while the major emphasis of one cluster’s project was literacy, it used teachers’ understanding of classroom behaviour in outlining the project, since “teachers continually talk about the other part of the curriculum they engage with – the ‘Social Skills’ that they integrate throughout their learning areas.” (Youth Education Cluster, YCP1, 2004)
REPORTING & INNOVATION PROCESS FOR THE PROJECT

Templates for a four-stage reporting process, entitled Your School Project (YSP) and Your Cluster Project (YCP), were made available on the NQSF website. Two cycles of documentation were completed by each cluster, and after quality assurance, these were published on the website, where they could be accessed by all schools nationally.

- YCP1 described the cluster context and the essential and distinctive features of the project. This document included goals and targets, an explanation of the rationale for the project, and outlined how available resources were to be used.
- YCP2 identified assessment tools and data collection strategies to monitor and measure the outcomes of the project. The evaluation strategy and baseline data was to be collected at the commencement of the project to provide an evidential base for later assessment of the impact of the project. Clusters were encouraged to collect both qualitative and quantitative data to be analysed during the project.
- YCP3 identified the strategies and processes to be used in implementing the project. Clusters also indicated how they would address the relevant NQSF dimensions of quality schooling through their projects.
- YCP4 presented an analysis of data to evaluate the outcomes of the project and its impact on learning for boys.

The rigour of data collection, analysis and reporting required of schools involved in BELS was more demanding than in most previous projects the schools had undertaken. At first, some teachers were overwhelmed by the approach. However, as the projects progressed, cluster reports indicated that teachers saw value in the process:

…the group was able to break down the task into more achievable and realistic targets. The most useful tool in this process was the [scaffolding provided through the] [project reporting framework]. (Ferntree Gully Cluster, YCP4 2005)

Some schools focusing on social competencies and emotional well-being were concerned by the rigorous approach, but both aspects are necessary for a professional learning community:

For teachers unfamiliar with research and data, this was a threatening proposition…we thought our commitment to social learning and well-being of students would be compromised. On reflection it was probably enhanced as we struggled with the connections between well-being, effective pedagogies and learning outcomes. After all, what is the point of spending a huge amount of time, energy and resources on enhancing well-being if we are not also improving learning? (Salisbury Cluster, YCP4 2005)

The NQSF framework was used by clusters as a tool to support project planning and management, and to set substantive goals:

We also found that we were using the data in many of the mandatory planning tasks expected in the running of our schools…and the use of the NQSF framework was an excellent way to review planning targets in our schools, not only the project goals, but the other goals associated with the schools' directions. (Collector Cluster, YCP4 2004)
One lesson learnt by the end of the project was that the reporting process could have been streamlined to reduce the amount of extra work this entailed for teachers, while maintaining the accountability required.

Grant payments to clusters were linked to the completion of the YCP reporting documents. Under the terms of the BELS contract, schools and clusters retained ownership of their materials.

The NPMT provided several face-to-face workshops for each cluster, where National Managers met and worked with teachers. Workshops in 2004 and 2005 focused on developing each cluster’s capacity to achieve the project outcomes; the evidence-based model underpinning the documentation; the collection and analyses of qualitative and quantitative data; and the writing of cluster reports. Teachers were given time and support to identify appropriate data, to analyse it rigorously and to prepare written reports for use by practitioners and the education community nationally.

SELECTION OF SCHOOLS

The Project Team established two independent panels to select from the pool of applications received from schools. The two panels operated simultaneously, but independently, one in Adelaide and one in Melbourne over a four-day period. Each application was independently scored by a member of each panel. The four criteria specified in the application documents were each assessed on a score of 1–10 and the total scores computed by adding the scores for each criterion. The application was reassessed independently by a second assessor from each panel in cases where there was a discrepancy of 5 or more points in the total score between the two assessors. The two scores that were closest to one another were used in computing the mean score.

It was clear from the applications that the Lighthouse Schools model on which the programme was based could not be implemented, because most applications were focused on the cluster of schools developing and evaluating a range of strategies. Only a very small number of applications were based on a genuine professional dissemination model for a set of proven practices that other schools in the cluster could implement.

The early reports produced by clusters confirmed this by reporting on approaches to improve the educational outcomes of boys by “identifying, trialling and validating” strategies, rather than “dissemination of best practice”. Clusters had very few strategies that could be quickly and effectively put into place, and Lighthouse Schools felt that there was still much to be learned. As a result, the role of Lighthouse schools focused on the management of this rare opportunity to investigate boys’ schooling issues, as opposed to a role as a ‘Lighthouse’ that was able to illuminate the way forward to improve boys’ education.
As the allocation process also included a criterion for schools to be selected in an approximately pro-rata ratio to the population distribution of schools by sector and state/territory, the applications were then rank-ordered for each sector (government, Catholic, independent) within each state and territory. The median score and cut-off score for each sector and each state or territory is presented in Figures 23 & 24.

The average assessment scores for the 143 clusters that applied for funding was 26—out of a maximum possible score of 40 (Figure 24). The average score for government school clusters was higher than for non-government schools. The lowest average
assessment score was 22 for Queensland and highest was 26 for South Australia, Victoria and New South Wales.

The median score for clusters that were funded was 32 for government school clusters, 26 for Catholic school clusters and 31 for Independent school clusters. The highest cut-score was 33 for the Northern Territory and the lowest was 21 for Queensland.

<table>
<thead>
<tr>
<th>Cluster Size</th>
<th>Number of Clusters Funded</th>
<th>Number of Schools</th>
<th>% of Funded Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>65</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>77</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>54</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>33</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>351</td>
<td>100</td>
</tr>
</tbody>
</table>

The number of schools and clusters by cluster size is set out in Figure 25. The median cluster size for funded clusters was 7 schools, but the most common cluster size for funded clusters was 5 schools. This mirrored the size distribution of all clusters that applied for funding.

Among the schools selected, primary schools (67%) far outweighed the other levels, with secondary (17%), K-12 (4%), secondary colleges (0.5%), and distance education and custodial centres (4.5%).

Thirty nine percent of the schools funded were situated in capital cities, 24% were located in regional cities, 29% were classified as rural schools, and 7% were identified as isolated schools.

STUDENTS IN THE SELECTED SCHOOLS

Any account of numbers of students involved in the project must be treated as approximate. The applications indicated that 65,171 boys and 53,673 girls were enrolled in participating schools. Of these students, approximately 50% of boys were included in BELS projects in some way. Participation of girls was not generally stated, although 5 clusters include data on girls’ participation in BELS projects.

Levels of participation varied considerably. For example, one cluster had 2,358 students enrolled in its five participating primary schools and one secondary school. A majority of the primary students and most Grade 7 and 8 secondary students participated in some
aspect of the BELS project. For example, in one school the Book Bag Buddy strategy involved 31 Grade 5 students and 26 Prep students, once a fortnight for one hour over the year. Their Rock and Water strategy involved 31 Grade 5 students in an 8 week and a 6 week block. Another group of 28 Grade 6 students participated in an 8 week block. The Prep–Grade 4 group were included in the Rock and Water strategy, but through intermittent strategies that dealt with behavioural problems within the school. A Literacy Block Focus involved all Prep–Grade 6 classes for 2 hours a day, 4 days each week, but this altered in the second phase of their project.

TEACHERS IN THE SELECTED SCHOOLS
While many schools, particularly primary schools, had a whole–school approach to BELS, few were able to afford to do this throughout the life of their project, thus many schools organised small focus groups of teachers to work on specific strategies. Many clusters used some of their funding to release teachers to undertake critical research and administration tasks. These roles typically involved inter-school liaison tasks, organisation of cluster meetings, resource allocation, report writing, problem solving, community liaison, and budgeting and general administration. The degree of support for these positions varied from half a day to two days a week FTE, with the most common allocation being half a day. Anecdotal reports indicated a general opinion that these BELS-supported leadership roles were critical to the success of the clusters’ projects.

SCHOOL & CLUSTER CAPACITY
The BELS Network provided schools with support to develop their projects, gather data and analyse the impact of the project on boys’ learning. Schools themselves managed the change process involved in each project, and sourced the professional learning programmes they required. The project confirmed the findings from earlier work (Cuttance et al, 2001) that indicated schools require support to manage such projects, particularly in relation to researching and evaluating their impact. Teachers are not trained in research as part of their teacher preparation, hence they need support in translating the findings of research into implications for practice and to research and analyse the effects of the strategies that they have put in place. Although projects such as this do provide a basis for developing teacher capacity in these areas, any expectation that teachers will also develop sufficient capacity during the project to undertake the research element gets in the way of developing and implementing the practices themselves.

There was substantial evidence across projects that schools lacked the capacity to collect and analyse both qualitative and quantitative data in an efficient way. The administrative and organisational systems in schools are not set-up to gather and analyse other than routine administrative and assessment data. For example, many schools do not have access to the expertise required to design appropriate questionnaires, to sample populations, to process the data, and to undertake the analysis of the data. These are all aspects of research in the BELS school projects that required external support. Data analysis, in particular, is a major area of weakness in most schools. Without external support, schools undertake little actual analysis of qualitative data, with direct quotations used in place of analysis, and produce ‘inappropriate’ graphs and misinterpretations of quantitative data.
The formation of clusters was an area in which there was great variation across the nation. In some cases, clusters were based on well-established relationships between groups of schools in which there was a sound basis for working together on projects such as the improvement of boys’ learning. In other cases, however, some Lighthouse Schools managed their relationship with individual schools independently of one another, and in that sense the group did not work as a cluster. This was appropriate where the Lighthouse School did in fact operate as a Lighthouse, that is, a school that had well developed strategies that it was able to share with other schools.

In some cases, where there was high mobility of staff, some Lighthouse Schools were not able to develop strategies or better knowledge of how to solve problems in improving boys’ learning outcomes, and the process was much more one of the Lighthouse School managing the funding. In a small number of cases, clusters became dysfunctional during the project.

Where the Lighthouse School was struggling to survive, the cluster was much more likely to become dysfunctional during the project. In one case, the NPMT had to intervene to ensure that the funds from the cluster grant were appropriately deployed.

Another lesson from BELS was that the timing of projects would be better if aligned with the formal planning and improvement processes of the schools involved. Schools would have benefited from more planning time to integrate this major focus on improving learning outcomes, in this case for boys, into the ongoing planning, development, monitoring and evaluation cycle that most schools now regularly undertake. Most schools plan activities for the next school year in the third quarter of each year. Hence, schools need to know what major initiatives and what funding they will receive at least 3–5 months in advance of the school year.

To mitigate the lack of planning time at the beginning of projects, the NPMT advised schools to utilise the remainder of the first calendar year of their projects for planning and trialling their strategies and to move to full implementation of their project from the commencement of the following year. Many clusters reported that this process led them change a number of their initial strategies as the trial indicated that they were unlikely to have the impact intended.

There were a range of reasons for changing initial strategies: changes in cluster and school focus as the project was firmed-up; lack of engagement of school staff with some strategies; indications that some strategies were not feasible in the context; a realisation that the project included too many strategies to be implemented effectively and efficiently—some strategies did not fit in with the overall development plans of the school’s concerned—and evidence that some strategies were unlikely to bear fruit in the circumstances prevailing at that time. The majority of clusters followed the advice to trial their strategies, although some went through a significant restructuring of their project and did not have time to trial strategies, but by delaying implementation they were able to align the project with the development plan for the following calendar year. The value of implementing a pilot project was commented on by one cluster as follows:

One of the most useful aspects of the YCP reporting structure was the development and implementation of the trial strategy. This provided the group with a manageable introductory project that went a long way toward informing the group about the eventual direction of the whole project. It is strongly recommended to anyone taking a project of this magnitude to firstly employ a trial strategy, the results of which can either confirm the aims of the project or alternately dramatically change the direction of the project. (Ferntree Gully Cluster, YCP4 2005)
A lesson can be learnt from the initial arrangements for setting up the project. In future, it may be better to allow schools more time to submit proposals for funding. Invitations were made in the last weeks of the school year, and in most cases schools put the application process aside to attend to the many other issues they have to deal with at that time of the year. Unfortunately, this meant that schools generally had a very short lead-time from when they considered the application process after the normal settling-in period at the start of the next school year.

CONSULTANCY SUPPORT TO SCHOOLS

Approximately 110 consultants were involved in BELS. While some were retained due to their expertise in boys’ education, the majority brought skills in associated areas, such as research, literacy, and motivation. While many clusters drew on school-based or local expertise when implementing programmes, many sought specialist advice from the broader educational sector.

There existed during BELS a dearth of suitably qualified experts in boys’ education *per se* sufficient to meet demand. Many requests for specialist assistance were received by the BELS management team from clusters, with these requests often not being met due to there being no specialist in the area required, the available people being overly academic, too expensive, too specialised, or simply being unavailable. Some clusters engaged the services of high profile experts without suitable thought being given to establishing agreements for services and stipulating certain outcomes from those services. There were cases of clusters being charged $4,000 a day for workshops that provided an excellent introduction to boys’ education issues, only to have the application of those principles to the specific school situation left to teachers to address.

There is also a potentially critical role for recently retired, senior educators to support schools as change agents, particularly given the fact that the depth of experience in schools is likely to decline over the next decade, as ‘baby boom’ staff move to retirement. Many of the clusters would have benefited from access to recently retired senior school leaders in a ‘critical friend’ capacity. This was more evident in rural and remote clusters, particularly where cluster schools were unable to meet as required. Schools would probably have received more benefit by working with recently retired senior school leaders than the university-based consultants for some of the support they required. Although university-based consultants can provide a range of technical support—such as evaluation and data analysis strategies—many have little recent experience in working in school environments and find that engaging with school contexts is no longer feasible given the other demands on their time.
REFERENCES

